Epigenetic mechanisms and DOHaD

Martha Susiarjo, PhD
Assistant Professor of Environmental Medicine
University of Rochester, NY
Developmental origins of health and disease

GENE-ENVIRONMENT INTERACTION

EPIGENETICS
Epigenetic: heritable changes in gene expression caused by mechanisms that do not depend on changes in DNA sequences
Genetics and disease

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sequence 1</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (G/G)</td>
<td>AGATTCAGGCATATT</td>
<td>AGATTCAGGCATATT</td>
</tr>
<tr>
<td>Carrier (G/A)</td>
<td>AGATTCAGGCATATT</td>
<td>AGATTCAAGCATATT</td>
</tr>
<tr>
<td>Disease (A/A)</td>
<td>AGATTCAAGCATATT</td>
<td>AGATTCAAGCATATT</td>
</tr>
</tbody>
</table>
Epigenetics and disease

Adapted from Petronis et. al., 2003
Epigenetic mechanisms in mammalian development

- Lineage commitment
- Retrotransposon silencing
- X Chromosome inactivation
- Genomic imprinting
Review of epigenetics mechanisms

EPIGENETIC MECHANISMS
are affected by these factors and processes:
- Development (in utero, childhood)
- Environmental chemicals
- Drugs/Pharmaceuticals
- Aging
- Diet

DNA methylation
Methyl group (an epigenetic factor found in some dietary sources) can tag DNA and activate or repress genes.

Histone modification
The binding of epigenetic factors to histone “tails” alters the extent to which DNA is wrapped around histones and the availability of genes in the DNA to be activated.

CHROMATIN

HEALTH ENDPOINTS
- Cancer
- Autoimmune disease
- Mental disorders
- Diabetes

EPIGENETIC FACTOR

Histones are proteins around which DNA can wind for compaction and gene regulation.
F0

multigenerational (directly exposed)

F1

F2

transgenerational (no direct exposure)

F3

Adapted from Xin F. et al (2015) Seminars in Cell and Developmental Biology
Epigenetic mechanisms in mammalian development

- Lineage commitment
- Retrotransposon silencing
- X Chromosome inactivation
- Genomic imprinting
Genomic Imprinting
The unequal expression of the maternal and paternal alleles of a gene
Dosage is important!

Normal

Too much!

Not enough!
Abnormal imprinting disrupts development

Fetal growth

Placental development
Tunster et al (2011)

Growth
Beckwith-Wiedemann Syndrome

Neurobehavioral development
Prader-Willi Syndrome
Angelman Syndrome
A model of environmental exposure: Bisphenol A is ubiquitous in the environment.
MOUSE
CHR 7

H19/Igf2 domain:

- insulin-like growth factor
- fetal growth
- misregulation linked to disease

- BPA exposure alters DNA methylation and expression (Susiarjo et al 2013: PLoS Genetics)
Susiarjo et al (2015): Endocrinology

Igf2 normally expressed

Healthy

Igf2 overproduced

Adult onset obesity
Glucose intolerance
Insulin resistance