Endocrine Disrupting Chemicals and Epigenetic Regulation in the Placenta KARIN B. MICHELS, SCD, PHD

Endocrine Disrupting Chemicals

•EDCs are exogenous chemicals that can antagonize or mimic the effects of the body's endogenous hormones

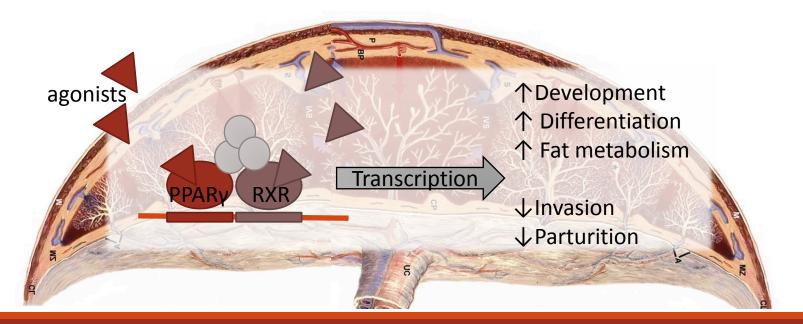
•Phthalates and phenols are two classes of EDCs of significant concern:

- Widespread human exposure
- Suspected detrimental health effects

•EDCs measured in amniotic fluid, placental tissue, and cord blood indicates that the developing fetus is exposed to these compounds

Endocrine Disrupting Chemicals

	Phthalates	Phenols
Epidemiologic	 Increased risk of prematurity 	 Increased risk of
studies of	 Impaired mental & 	prematurity
prenatal	psychomotor development	 Sexually dimorphic influences on childhood
exposure	 Behavioral & emotional problems 	behavior
	 Altered reproductive tract development in males 	 Changes in metabolic profile


Endocrine Disrupting Chemicals

	Phthalates	Phenols
Applications	 Low molecular weight phthalates 	 Parabens Frequently in cosmetics
	 Solvents: lotion, nail polish 	 Non-parabens Sunscreen, antimicrobial
	 High molecular weight phthalates 	Preservatives,Bisphenol A:
	 Plasticizers: flooring, wall coverings 	polycarbonate plastic, lining of food cans,
		receipt paper

EDCs and the Placenta

Associations between prenatal EDC exposure and pediatric outcomes may be mediated by alterations in the placenta

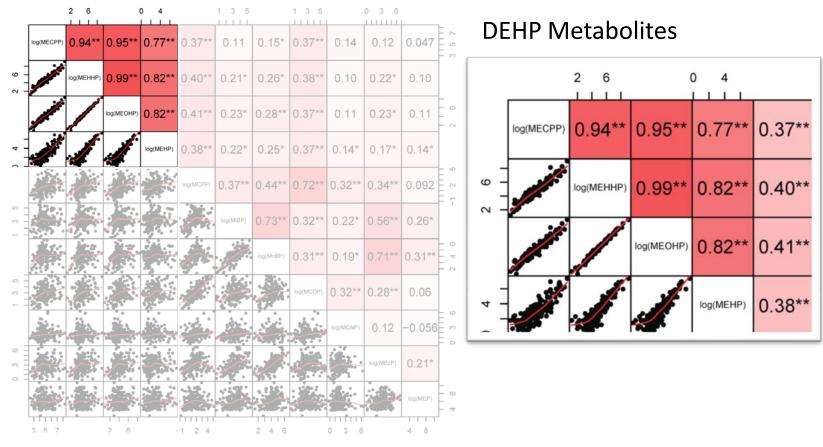
- EDCs suggested to alter placenta development and function
- Placental dysfunction can modify the supply of nutrients to the fetus and impact systems development

Study Population

A majority of the mothers in our study population were:

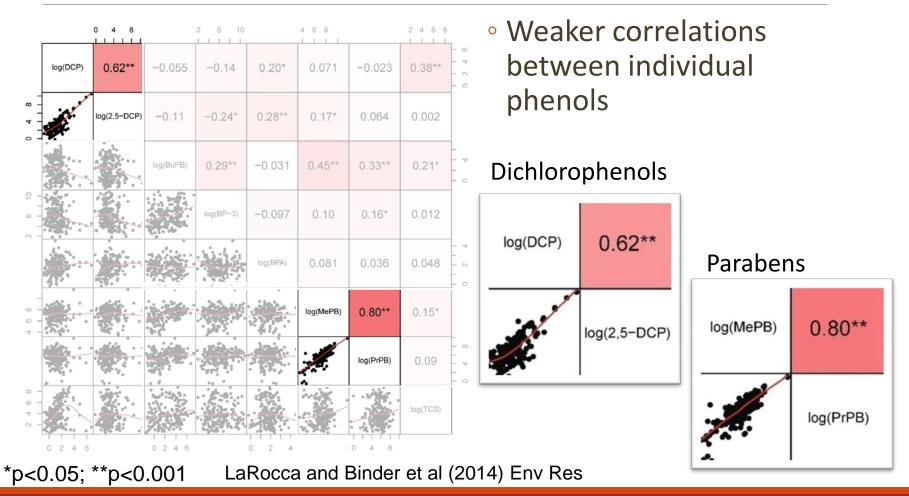
- Over the age of 30
- Normal/over-weight
- Caucasian
- Non-smokers
- C-section
- Nulliparous or one prior successful pregnancy

Characteristics	
Maternal Age	32.91 (5.01)
Pre-pregnancy BMI [‡]	25.45 (5.74)
Infant Sex‡ (N (%))	
Female	94 (51.93)
Male	85 (46.96)
Ethnicity (N (%))	
White non-Hispanic	126 (70.39)
Hispanic or Latino	25 (14.00)
Asian/Pacific-Islander	5 (2.79)
Black/African-American	23 (12.85)
Smoke During Pregnancy (N (%))	
No	174 (97.21)
Yes	5 (2.79)
Method of Delivery [‡] (nmiss=6; N (%))	
Spontaneous	36 (20.81)
Induced	27 (15.61)
C-section	110 (63.58)
Parity (N (%))	
Nulliparous	64 (36.16)
1	66 (37.29)
2	32 (18.08)
<u>≥</u> 3	15 (8.47)


Phthalate Measurements

Phthalate	Abbrev.	High/ Low MW	LOD (mol/L)	%> LOD	GM (mol/L)
Mono-2-ethyl-5-carboxypentyl phthalate	MECPP	High	1.95	100	130.20
Mono-2-ethyl-5-hydroxyhexyl phthalate	MEHHP	High	2.38	99	98.07
	MEOHP	U	2.38	98	<u> </u>
Mono-2-ethyl-5-oxohexyl phthalate		High			60.62
Mono-2-ethylhexyl phthalate	MEHP	High	4.31	68	15.25
Mono-3-carboxypropyl phthalate	MCPP	High	0.79	84	5.34
Mono-isobutyl phthalate	MiBP	Low	2.70	95	24.98
Mono-n-butyl phthalate	MnBP	Low	2.70	97	58.44
Monocarboxyoctyl phthalate	MCOP	High	2.17	94	20.13
Monocarboxynonyl phthalate	MCNP	High	1.78	80	5.79
Monobenzyl phthalate	MBzP	High	1.17	97	21.05
Monoethyl phthalate	MEP	Low	4.12	100	445.19

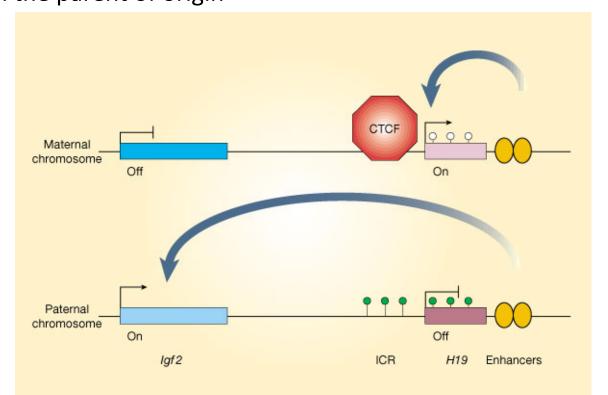
Phenol Measurements


		Paraben	LOD		GM
Phenol	Abbrev.	Yes/No	(mol/L)	%>LOD	(mol/L)
2,4-dichlorophenol	DCP	No	1.23	80	3.45
2,5-dichlorophenol	2,5 DCP	No	1.23	96	21.76
Benzophenone-3	BP-3	No	1.75	100	436.64
Bisphenol A	BPA	No	1.75	86	5.97
Butyl Paraben	BuPB	Yes	1.03	78	10.34
Methyl Paraben	MePB	Yes	6.57	100	1257.19
Propyl Paraben	PrPB	Yes	1.11	98	253.58
Triclosan	TCS	No	7.94	78	59.20

Spearman Correlations between Individual Phthalates

*p<0.05; **p<0.001 LaRocca and Binder et al (2014) Env Res

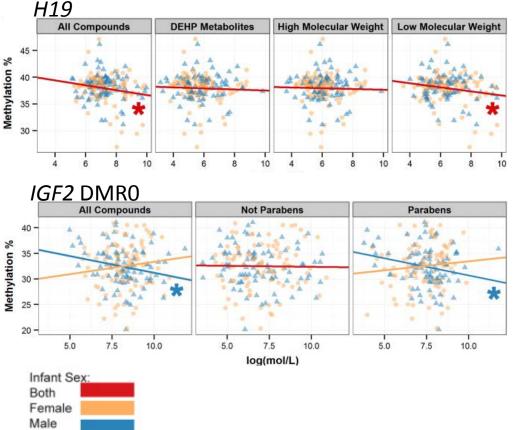
Spearman Correlations between Individual Phenols



Assessment of Epigenetic Mechanisms

- Investigated the association between EDC levels and the regulation of two reciprocally imprinted genes implicated in fetal and embryonic growth (*IGF2* and *H19*)
 - Pyrosequenced methylation of differentially methylated regions (DMRs) of *H19, IGF2*DMR0, and *IGF2*DMR2
 - Assessed overall expression and allele-specific expression of H19 and IGF2

Imprinting


Genomic imprinting refers to the epigenetic mechanism through which a subset of genes are monoallelically expressed in a parent-of-origin specific manner
Important to placental and fetal growth and development
Possess differentially methylated regions (DMRs) whereby allelic methylation depends on the parent of origin

© Reik and Murray, *Nature* **405**, 408-409

Assessment of Epigenetic Mechanisms

- Change in DMR methylation
 - Decrease in *H19* methylation was associated with increased phthalate burden
 - Decrease in *IGF2* DMR0 methylation with increased phenol burden
 - Effect modification by infant sex
- Variation in methylation was not associated with changes in allelespecific expression
- Increased deviation from allelespecific expression of *H19* was associated with DEHP metabolites and HMW phthalates

LaRocca* & Binder* et al (2014) Environ Res

Allele-Specific Expression H19

H19								
	Male Coeff	Male CI	Female Coeff	Female CI	P value Compound	P value Sex Interaction		
Phthalates								
HMW	1.11*	(1.015, 1.207)	-0.05	(0.89, 1.03)	0.26	0.01*		
LMW	0.97	(0.92, 1.03)	0.97	(0.92, 1.03)	0.37	0.78		
DEHP	1.10*	(1.011, 1.188)	-0.03	(0.90, 1.03)	0.32	0.02*		
ΣPhthalates	1.00	(0.93, 1.07)	1.00	(0.93, 1.07)	0.93	0.09		
Phenols								
Parabens	0.96	(0.92, 1.01)	0.96	(0.92, 1.01)	0.14	0.70		
Non-Parabens	1.01	(0.97, 1.05)	1.01	(0.97, 1.05)	0.65	0.37		
ΣPhenols	0.99	(0.94, 1.04)	0.99	(0.94, 1.04)	0.74	0.27		

Conclusions

First trimester additive phthalate and phenol biomarker measurements are associated with altered *H19* and *IGF2* methylation in placenta samples

Currently exploring epigenome-wide associations.

Epigenetic and transcriptional changes associated with prenatal EDC burden may reflect physiological changes in the placenta

• Critical period of development that may program later phenotypes

Acknowledgements

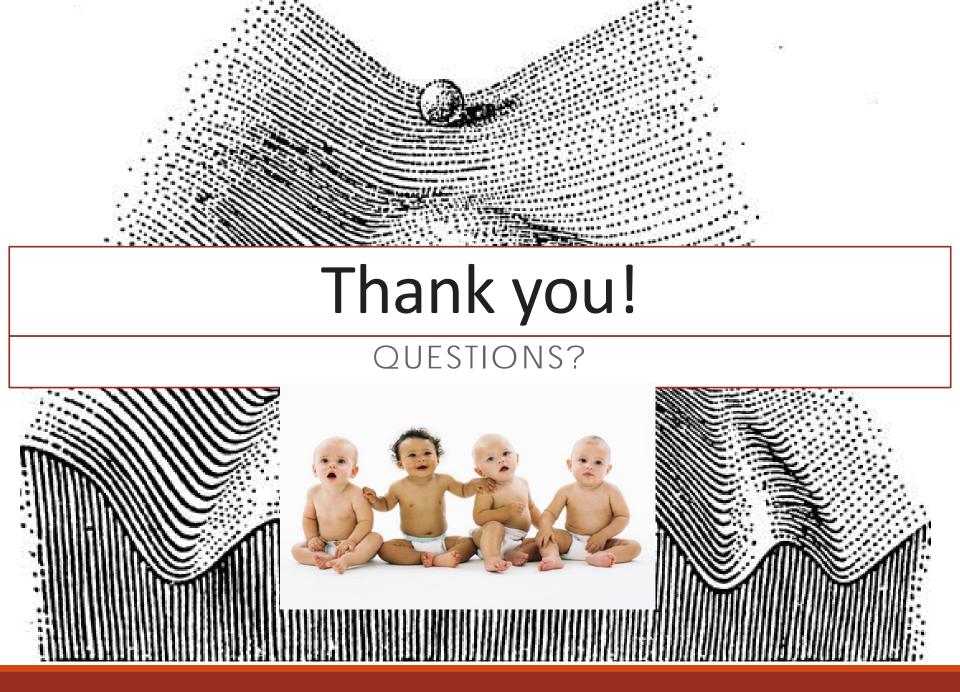
Michels' Epigenetics Lab

- Jessica LaRocca, PhD
- Alexandra Binder, ScD
- William Accomando, PhD
- Milena Leseva, PhD
- Aggeliki Tserga, PhD
- Timothy Barrow, PhD
- Benedetta Izzi, PhD
- Sanne van Otterdijk, PhD

CDC

• Antonia Calafat, PhD

Dana Faber Cancer Center Rafael Irizarry



Acknowledgements

Funding:

- The Epigenetic Birth Cohort was funded by research grant R21CA128382 from the National Cancer Institute, National Institutes of Health
- Dr. Binder was supported by Training Grant T32HD060454 in Reproductive, Perinatal and Pediatric Epidemiology from the National Institute of Child Health and Human Development, National Institutes of Health
- Dr. LaRocca was supported by the Harvard University Center for the Environment Ziff Environmental Fellowship
- Dr. Michels was supported by grant K01ES015771 from the National Institute of Environmental Health Sciences, National Institutes of Health

