Perinatal DDT Exposure Impairs Energy Expenditure and Metabolism in Adult Female Mice

Michele La Merrill, PhD MPH
Department of Environmental Toxicology
University of California at Davis
Average Body Weight & Obesity Has Been Rising in Animals Over Time
DDTs and Risk of Diabetes

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Description (n)</th>
<th>Chemical</th>
<th>Diagnostic</th>
<th>Risk Estimate adjOR (95% CI)</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al. 2010</td>
<td>US (multi-site) CARDIA nested CC, ≥16y (180)</td>
<td>DDT, p,p′</td>
<td>FBG, meds</td>
<td>0.9 (0.3, 2.6)</td>
<td>Q4 vs Q1 pg/g (serum) ≥2 vs <20 ng/g (serum)</td>
</tr>
<tr>
<td>Cox et al. 2007</td>
<td>US (NHANES 1988-89) CS, 220y (1,303)</td>
<td>DDT, p,p′</td>
<td>SR</td>
<td>1.9 (1, 3.7)</td>
<td>≥20.8-26.6 vs ≤20.7 ng/g lipid (serum) ≥20.7 vs <20.7 ng/g lipid (serum)</td>
</tr>
<tr>
<td>Everett et al. 2007</td>
<td>US (NHANES 1999-2004) CS, 320y (1,830)</td>
<td>DDT, p,p′</td>
<td>SR, Hba1c</td>
<td>1.17 (0.95, 1.45)</td>
<td>>57,315 (Q1) vs ≤215 (Q1) pg/g (serum)</td>
</tr>
<tr>
<td>Everett et al. 2010</td>
<td>US (NHANES 1999-2004) CS, 320y (1,049)</td>
<td>DDT, p,p′</td>
<td>SR, Hba1c</td>
<td>1.96 (1.29, 2.98)</td>
<td>>4,600 vs 44,600 pg/ml (serum)</td>
</tr>
<tr>
<td>Son et al. 2010</td>
<td>US (multi-site) CARDIA nested CC, ≥16y (80)</td>
<td>DDT, p,p′</td>
<td>FBG, meds</td>
<td>10.6 (1.3, 84.9)</td>
<td>>58.6 (>75th) vs <22.81 (<25th) ng/g (serum) ≥168.6 vs <168 ng/g lipid (serum)</td>
</tr>
<tr>
<td>Ukopec et al. 2010</td>
<td>Slovakia (eastern, polluted) CS, 221y (2,047)</td>
<td>DDT, p,p′</td>
<td>FBG, 2hr glucose</td>
<td>1.84 (1.03, 2.27)</td>
<td>1,560 (75 to <90th) vs ND ng/g lipid (serum)</td>
</tr>
<tr>
<td>Son et al. 2010</td>
<td>US (multi-site) CARDIA nested CC, ≥16y (80)</td>
<td>DDT, p,p′</td>
<td>FBG, meds</td>
<td>12.3 (1,3, 113.2)</td>
<td>[110 (56,250[med]=95th, cases)] ng/g lipid (serum)</td>
</tr>
<tr>
<td>Lee et al. 2010</td>
<td>US (NHANES 1999-2004) CS, 320y (1,303)</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>0.7 (0.2, 1.9)</td>
<td>990 (300-5,300][med]=95th, cases] ng/g lipid (serum)</td>
</tr>
<tr>
<td>Rignell-Hydbom et al. 2009</td>
<td>Sweden (Lund) WHLA nested CC, ≥742</td>
<td>DDE, p,p′</td>
<td>OGTT</td>
<td>5.5 (1.2, 25)</td>
<td>1100 (390-2,490)[med]=95th, cases] ng/g lipid (serum)</td>
</tr>
<tr>
<td>Cox et al. 2007</td>
<td>US (NHANES 1988-89) CS, 220y (1,303)</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>2.63 (1.2, 5.8)</td>
<td>667.4 (med, T3) vs 162.2 (med, T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Everett et al. 2010</td>
<td>US (NHANES 1999-2004) CS, 320y (3,049)</td>
<td>DDE, p,p′</td>
<td>self report, Hba1c</td>
<td>1.9 (1,3, 3.18)</td>
<td>3,605-22,328 (Q3) vs 54-621 (Q1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Lee et al. 2006</td>
<td>US (NHANES 1999-2004) CS, 320y (2,106)</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>2.3 (1,5)</td>
<td>>1,617 (>75th) vs ≤1,617 (75th) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Rignell-Hydbom et al. 2007</td>
<td>Sweden (east/west-coast), fisherman’s wives ≥543</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>1.3 (1.1, 1.5)</td>
<td>23.3-5.3 (T2) vs <2.2 (T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Rylander et al. 2005</td>
<td>Sweden (nat’l registry), fisherman’s wives ≥184</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>1.05 (1.01, 1.10)</td>
<td>544.6 (T3) vs 246.1 (T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Rylander et al. 2005</td>
<td>Sweden (nat’l registry), fisherman ≥171</td>
<td>DDE, p,p′</td>
<td>self report</td>
<td>1.05 (0.98, 1.1)</td>
<td>4.1-24.0 (Q4) vs ≤1.2 (Q1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Son et al. 2010</td>
<td>S. Korea (Uijin) CS, 340y (60)</td>
<td>DDE, p,p′</td>
<td>FBG, medication</td>
<td>12.7 (1,9, 83.7)</td>
<td>8.4 (med, T3) vs 2.7 (med, T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Ukopec et al. 2010</td>
<td>Slovakia (eastern, polluted) CS, 221y (2,047)</td>
<td>DDE, p,p′</td>
<td>FBG, 2hr glucose</td>
<td>1.94 (1.11, 3.78)</td>
<td>23.3-5.3 (T2) vs <2.2 (T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Philibert et al. 2009</td>
<td>Canada (Northern Ontario) First Nation, ≥101</td>
<td>DDE, p,p′</td>
<td>SR</td>
<td>3.56 (0.91, 13.08)</td>
<td>≥23.3-5.3 (T2) vs <2.2 (T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Turyk et al. 2009a</td>
<td>US (Great Lakes), prospective fish eaters, ≥50</td>
<td>DDE</td>
<td>self report</td>
<td>5.5 (1.2, 25.1) IRR</td>
<td>544.6 (T3) vs 246.1 (T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Codru et al. 2007</td>
<td>US (Akwasasne) Mohawks CS, ≥352</td>
<td>DDE</td>
<td>FBG, medication</td>
<td>6.2 (1.8, 21.9)</td>
<td>4.1-24.0 (Q4) vs ≤1.2 (Q1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Turyk et al. 2009b</td>
<td>US (Great Lakes) fish eaters CS, ≥503</td>
<td>DDE</td>
<td>self report</td>
<td>3.6 (1,4, 9.4)</td>
<td>8.4 (med, T3) vs 2.7 (med, T1) ng/g lipid (serum)</td>
</tr>
<tr>
<td>Son et al. 2010</td>
<td>S. Korea (Uijin) CS, 340y (60)</td>
<td>DDD, p,p′</td>
<td>FBG, meds</td>
<td>3.6 (0.8, 16.3)</td>
<td>lower 95% confidence interval upper 95% confidence interval risk estimate</td>
</tr>
</tbody>
</table>

Dr. Kris Thayer
Developmental Origins of Metabolic Disease

La Merrill & Birnbaum 2011
Could Developmental Exposure to DDT Increase Adult Risk of Obesity and Diabetes?
Internal Dose in Range of Human Exposure

- CA (CHDS) pregnancies
- MHANES Cox 2007
- Norwegian adults Rylander 2009
- Downstream plant Kreiss 1981
- S. African children Bouwman 1992
- S. African infants Bouwman 1992
- Mexican children Herrera Portugal 2005

ng DDE/ml

- CA (CHDS) pregnancies
- MHANES Cox 2007
- Norwegian adults Rylander 2009
- S. African infants Bouwman 1992
- Mexican children Herrera Portugal 2005
- Montreal adults Gautier 2014

ng DDT/ml
Perinatal DDT Increases Early Adult Adiposity

A) Body Mass (g) over Age (months)
B) Fat Mass (%) over Age (months)
C) Fat mass (g) over Age (months)
D) Lean Mass (g) over Age (months)
What Causes Excess Body Mass?

• The 1st Law of Thermodynamics!
 Excess Mass = Energy Intake > Energy Expenditure

• Energy Intake
 Food calories

• Energy Expenditure
 10-30% physical activity
 60-80% resting metabolic rate (homeothermy)
 10% adaptive thermogenesis (response to cold and diet)

Landsberg 2012
Perinatal DDT Decreases Thermogenesis

Food Intake (g/day)

Core Temperature (°C)

Age (months)

$P < 0.1$
Perinatal DDT Decreases Energy Expenditure

EE (kcal/kg/hr)

- VEH
- DDT

VO₂ (ml/kg/hr)

~70% EE

Movement (Counts)

~20% EE

Temperature (°C)

10% EE

Time at 4C (min)

- **VEH**
- **DDT**

~70% EE

~20% EE

10% EE
Mammalian body temperature maintenance is essential. Therefore when thermogenic capacity is reduced, metabolic compensation occurs. Does this metabolic compensation increase susceptibility to diet induced- metabolic disruption?
HFD Increases Susceptibility to Adult Insulin Resistance Induced by Perinatal DDT

Insulin (µg/l)
- VEH
- LFD
- DDT
- HFD

Glucose (mg/dl)
- VEH
- LFD
- DDT
- HFD

AUC
- VEH
- LFD
- DDT
- HFD

$P_i=0.08$
Perinatal DDT Reduces Hepatic Proteins Downstream of Insulin in HFD-fed Mice

Normal Insulin Signaling

- Insulin
- Insulin Receptor
- ERK1/2
- AKT
- GSK3
- Proliferation
- Glucose Uptake
- Glycogen Synthesis

Fold Change

<table>
<thead>
<tr>
<th>IR b tot</th>
<th>AKT 473</th>
<th>AKT 308</th>
<th>AKT tot</th>
<th>GSK3 phos</th>
<th>GSK3 tot</th>
<th>ERK phos</th>
<th>ERK tot</th>
<th>Hsc 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HFD Attenuates the Depressive Effect of Perinatal DDT on Thermogenesis

A

- Age (wks)
- Body Mass (g)

B

- Fat Mass (%)

C

- Cumulative Caloric Intake (kcal)

D

- Temperature (°C)

- VEH
- LFD
- DDT
- HFD

- P = 0.01

HFD attenuates the depressive effect of perinatal DDT on thermogenesis.
Brown Adipose Tissue: A Primer

• BURNS energy to make heat
• Neonatal response to ambient temperature
• Recently discovered to be present and active in adult humans
 – Presence of BAT in adult humans associated with lower diabetes risk (A1C)
 – Activation of adult human BAT may contribute to loss of over 4 kg body fat annually
Pathway to Thermogenesis: Respiration and its Uncoupling in Brown Adipose
HFD Attenuates the Depressive Effect of Perinatal DDT on BAT Thermogenesis & Substrate Utilization

A) $P_{<0.01}$

B) $P_{<0.01}$

C) $P_{<0.05}$

D) $P_{<0.05}$

E) $P_{<0.05}$

F) $P_{<0.05}$

G) $P_{<0.05}$

H) $P_{<0.05}$
Working Model: Perinatal DDT Exposure Impairs Respiration and its Uncoupling in Brown Adipose

- **DDT** affects various metabolic pathways:
 - **FA Oxidation**
 - **FA Transporter**
 - **LPL**
 - **Lipogenesis**
 - **Lipoprotein Particles**
 - **Glycerol**
 - **Twist1**
 - **Pgc1a**
 - **Twist1**
 - **Dio2**
 - **Cpt**
 - **Ucp1**
 - **ETC**
 - **ATP**
 - **NADH**
 - **FADH2**
 - **Glycolysis**
 - **Gluconeogenesis**
 - **Pgc1a**
 - **FA-CoA**

Key Metabolic Processes:
- **Lipid Metabolism**
- **Carbohydrate Metabolism**
- **Aerobic Oxidation**
- **Anaerobic Glycolysis**
- **Insulin Resistance**
Results Summary

• Perinatal DDT exposure leads to...
 – Increased adipose in early adulthood
 – Decreased energy expenditure
 • Decreased thermogenesis
 – Susceptibility to HFD
 • Insulin resistance
 • Decreased thermogenesis
 – Defects in brown adipose substrate utilization implicated
Malaria & Climate Change

• Predictions about mosquitoes carrying malaria
 – Larger numbers in existing range
 – Expanse of distribution

Melting glaciers are a source of marine DDTs:
≥ 60% to subalpine lakes
46% DDTs in Canadian Archipelago

Macdonald 2005
Thank you for your attention!

ACKNOWLEDGEMENTS

MSSM
Dr. Philip Landrigan
Dr. Christoph Buettner
Dr. Derek LeRoith
Dr. James Godbold
Dr. Claudia Lindtner
Ms. Erin Moshier

Albert Einstein SOM
Dr. Gary Schwartz

Rutgers U
Dr. Michael Gallo

NIEHS
Dr. Kristina Thayer
K99/R00 ES019919

No Conflicts of Interest