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Purpose of review

This review presents a rationale and evidence for contributions of environmental

influences and environmentally vulnerable physiology to autism spectrum disorders

(ASDs).

Recent findings

Recent studies suggest a substantial increase in ASD prevalence above earlier Centers

for Disease Control figures of one in 150, only partly explicable by data artifacts,

underscoring the possibility of environmental contributors to increased prevalence.

Some gene variants in ASD confer altered vulnerability to environmental stressors and

exposures. De-novo mutations and advanced parental age as a risk factor for ASD also

suggest a role for environment. Systemic and central nervous system pathophysiology,

including oxidative stress, neuroinflammation, and mitochondrial dysfunction can be

consistent with a role for environmental influence (e.g. from air pollution,

organophosphates, heavy metals) in ASD, and some of the underlying biochemical

disturbances (such as abnormalities in glutathione, a critical antioxidant and detoxifier)

can be reversed by targeted nutritional interventions. Dietary factors and food

contaminants may contribute risk. Improvement and loss of diagnosis in some with ASD

suggest brain circuitry amenable to environmental modulation.

Summary

Prevalence, genetic, exposure, and pathophysiological evidence all suggest a role for

environmental factors in the inception and lifelong modulation of ASD. This supports the

need for seeking targets for early and ongoing medical prevention and treatment of

ASD.
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Introduction
The present review will consider recent documentation

of increasing prevalence rates in autism spectrum dis-

orders (ASDs) and what may be contributing to these

prevalence rates. It will explore different interpretations

of the significance of these reports, gene–environment

interactions, and vulnerabilities in physiology in ASD

that may be targets of various environmental factors and

thereby may be contributing to those portions of the

increases in reported prevalence that are not due to other

factors, such as broadening of diagnostic criteria and

greater awareness of ASD.
Overview: environment and anomalies
Once thought to be rare, ASDs are now reportedly on the

rise and are the subject of daily media attention. In

addition, there is less consensus than in the past about

neural systems being the primary loci of dysfunction in
opyright © Lippincott Williams & Wilkins. Unauth
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ASD and a growing sense of whole body systems involve-

ment in autism wherein the brain may be impacted in

parallel with other systems (Fig. 1) [1,2]. There is begin-

ning to emerge a train of inquiry looking more seriously at

potential environmental causes of and mechanisms for

rising numbers and systemic features in autism [3,4].

Only in the past few years have funding opportunities

started to become available to support these types of

inquiries, and it is at least in part for this reason that the

relatively small share of the literature devoted to these

questions includes studies of varying quality and often

with small sample sizes.

Even so, a vantage point with some consistent themes

and perspectives is beginning to emerge. We are seeing

growing attention to indications of environmental con-

tribution beyond early notice of autism incidence in

association with in-utero valproic acid [5] or congenital

rubella [6]. Now on the radar screen, we find other

evidence for a role of environmental factors in the rising
orized reproduction of this article is prohibited.
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2 Developmental disorders

Figure 1 The figure schematizes the inputs from genes, environ-

ment, and gene–environment interactions as they impact the

organism’s gene expression and physiological activities

These activities in turn shape the various levels of phenotype, including
behavior, cognitive functioning, and somatic/medical domains.
numbers, such as incomplete monozygotic concordance,

differences related to geography, occupation and time

of birth; gene–environment interactions; environmental

toxins; investigation of genetic and physiological features

of the ASD phenotype that may be unusually vulnerable

to environmental exposures and stressors; and also unan-

ticipated evidence of plasticity and improvement in

response to environmental modulation. Proceedings from

a 2007 Institute of Medicine workshop on Autism and the

Environment [7�] and a workshop summary [8�] were

published. Along with an increased number of articles,

there have appeared two books [9��,10��] and one dedi-

cated journal issue [11��,12] focusing centrally on meta-

bolic, immune, and environmental issues in ASD. This

review will present a view of this emerging perspective

with an emphasis on the linkages being investigated

between environment and vulnerable physiology.
Figure 2 Annual incidence rates of autism based on the admin-

istrative database of the California Department of Developmen-

tal Services, 1990–2006

Reproduced with permission from [23�].
Autism prevalence
In the past year, a number of reports suggest that the

prevalence of ASD is greater than the one in 150 that was

reported by the Centers for Disease Control (CDC) in

2007, using 2000 and 2002 data [13,14]. Baron-Cohen

et al. [15] generated prevalence estimates in the UK of 94

per 10 000 using the Special Educational Needs register

and 99 per 10 000 using a diagnosis survey of children

aged 5–9 years in participating schools; when adjusted for

a ratio of known:unknown cases of about 3 : 2, their final

prevalence estimate was 157 per 10 000, or one in 64. A

report from the US Department of Health and Human

Services utilizing telephone interview data from the 2007

National Survey of Children’s Health found a weighted

point prevalence of 110 per 10 000 in the United States,

though this study’s telephone interview was limited and

could have skewed the estimate [16].

Concerns have been raised about how much of the

increases in prevalence represents an actual growth in

numbers. Diagnostic substitution – labeling people autis-
opyright © Lippincott Williams & Wilkins. Unautho
tic who previously would have been diagnosed with

something else – is one consideration [17–19]. Short-

comings of various data sources, such as administrative

data or clinician diagnosis, are also an issue [20–22].

To quantify the extent to which reported increases may be

explained by factors other than a true increase in incidence,

Hertz-Picciotto and Delwiche [23�] investigated cases in

the California Department of Developmental Services

databases from 1990 to 2006, during which a 600% increase

in incidence rate was observed (Fig. 2). Out of this 600%

increase, 24% could be explained by earlier diagnosis, an

increase of possibly 56% could have been due to inclusion

of milder cases, and based on data from a Finnish study,

120% was considered attributable to changes in the diag-

nostic criteria; the other 2/3 could not be accounted for by

such factors. This analysis minimized the influence of the

limitations of administrative data by examining files of

individual cases and linking to state birth records, by

supplementing with clinical confirmation of diagnoses,

and by considering ‘age at diagnosis’ as a metric that

may lag variably behind actual age of onset [24]. The

authors acknowledge considerable remaining uncertainty,

but nevertheless argue that given the gap between the

observed increase and the proportion explained by major

factors such as diagnostic substitution, the possibility of a

true increase in incidence deserves serious consideration.

Two further studies have also shown that diagnostic sub-

stitution can only partially account for increased preva-

lence numbers [25,26].
Genes and environment
Gene–environment interactions could contribute to pre-

valence increases. In many cases, genes and environment
rized reproduction of this article is prohibited.
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could both be necessary but neither alone sufficient to

cause autism. Pessah and Lein [27�] review how low-level

chemical exposure can influence some of the same

molecular, cellular, and behavioral outcomes that are

also influenced by genetics. They focus particularly on

environmental agents that interfere with three neurotrans-

mitters and pathways [gamma-aminobutyric acid (GABA),

acetylcholine, and calcium signaling pathways and

calcium-dependent effectors] already at risk in some indi-

viduals with ASD for genetic reasons. The existence of

inborn genetic vulnerabilities in such pathways may lower

the threshold at which the influence of environmental

factors may be felt, leading to an impact of environment

that differs across the population based on genetic sub-

strate [28�].

Vulnerabilities are being identified in ASD in a growing

number of environmentally responsive or sensitive genes

and pathways. The Environmental Genome Project of the

National Institute of Environmental Health Sciences

(NIEHS) has been investigating such genes and haplo-

types [29,30], and informatics resources such as the Com-

parative Toxicogenomics Database [31] are becoming

increasingly detailed and valuable. Aberrant metabolism

in environmentally sensitive pathways in individuals with

ASD who have no known neurometabolic disease is of

growing interest, particularly abnormalities in redox and

methylation, given the known impact of toxins on these

processes [32�]. Glutathione may be particularly important

because, as a critical antioxidant as well as an important
opyright © Lippincott Williams & Wilkins. Unauth

Figure 3 Greater cytoxicity from exposures can occur in the setting

With a low reserve, there is a fragile homeostasis that shows more vulnerabi
environmental toxins. With robust glutathione reserves, toxic insults are buff
leads to a fragile homeostasis in which a similar toxic insult will lead to toxicity
reduced glutathione reserve that may render them more sensitive to pro-ox
endogenous detoxifier, it plays a central role in how the

organism handles many types of exposures and stressors

(Fig. 3) [33��]. Significant transmission disequilibrium in

transmission of three alleles of a human glutathione per-

oxidase (GPX1) repeat was noted in 103 trios (probands

and parents) of autism disorder with undertransmission of

ALA6, suggesting a possible protective effect of this allele

[34]. An increased frequency of the ALAD2 variant of

delta aminolevulinic acid dehydratase in ASD, conferring

vulnerability to lead exposure along with a decreased

frequency of CPOX (coproporphyrin oxidase) variants

associated with vulnerability to lead suggests that ALAD2,

particularly in combination with lower glutathione levels,

may contribute to lead toxicity as an autism risk factor [35].

Paraoxonase 1 (PON1), which is associated with organo-

phosphate hydrolysis and which has low activity in child-

hood leading to increased vulnerability in young children

[36], was found to be associated with autism in a White-

American cohort from the United States where organopho-

sphates have been in more recent use but not in an Italian

cohort with less organophosphate exposure [37]. The

bioavailability and the catalytic activity of PON1 were

significantly impaired in a cohort of 50 children with ASD,

despite no association with polymorphisms in the PON1
gene and a normal distribution of the PON1 phenotype

[38], suggesting possible environmental targeting of these

functions.

The observation of more frequent de-novo copy number

variants in sporadic autism than in cases with affected
orized reproduction of this article is prohibited.

of impaired glutathione-dependent redox reserves

lity and lower resilience. Glutathione depletion will increase sensitivity to
ered and may never reach toxic threshold. Depleted glutathione reserve
and disorder. Many individuals with autism spectrum disorder (ASD) have
idant environmental exposures. Adapted with permission from [33��].
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first-degree relatives or in controls [39], as well as the

presence of hundreds of distinct variants seen only once

[40], suggest a potential role for environment. The

possibility of de-novo mutations is also raised by the

documentation of advanced parental age as a risk factor

for autism [41], which could explain some acquired

germline mutations. Possible environmental causes were

discussed in a literature survey that identified nine pre-

conception environmental exposures associated with

increased risk for autism and noted that five of these

factors (mercury, cadmium, nickel, trichloroethylene, and

vinyl chloride) are ‘established mutagens’ [42]. The

impact of such xenobiotics might be amplified by vitamin

D deficiency [43] due to the importance of this substance

in DNA repair mechanisms [42].
Environment and pathophysiology
Environmental exposures and stressors act through their

impact on the organism and they can be studied using

markers of exposure but also of susceptibility and effect.

Effects may impact brain development, development of

other organs and systems, and ongoing physiological

processes. A number of clinical and research findings

have been encouraging this direction of work. Prominent

among these are disturbances in immune function and

increases in immune vulnerability that are reviewed

elsewhere in this issue. One route of immune disturb-

ance is early life insults from the environment that

include xenobiotic-induced developmental immunotoxi-

city [44,45], as well as prenatal infection [46], prenatal

stress [47,48], and immune disruption of the gut–blood–

brain barrier [49]. Although we do not have measures at

this point that could be considered both sensitive and

specific to ASD, it does appear that many of these

findings may have clinical significance.

A growing body of literature has documented that oxi-

dative stress, which is well known to be a potential

consequence of environmental insult as well as of genetic

influences, is increased in ASD [33��,50]. Abnormal sulfur

amino acid metabolism consistent with oxidative stress

was documented in leukocytes [51]. In one study,

abnormalities in these metabolites were identified in

children with autistic disorder and pervasive develop-

mental disorder (PDD) but not in Asperger’s syndrome

[52]. Increased oxidation of cell membrane phosphatidyl-

ethanolamine in autism was shown to be mediated by

copper and ceruloplasmin, which may thereby be

contributory to oxidative stress, reduced phosphatidyl-

ethanolamine levels, and abnormal membrane function

[53]. A reduction in the ratio of reduced glutathione

to oxidized glutathione (GSH/GSSG) indicative of

oxidative stress was measured in both cytosol and mito-

chodria of lymphoblast cell lines from individuals

with autism [54]. Parents of children with autism were
opyright © Lippincott Williams & Wilkins. Unautho
shown to share similar metabolic deficits in methylation

capacity and glutathione-dependent antioxidant and

detoxification capacity to those observed in many autistic

children [55]. Acetominophen, an over the counter

drug in very common pediatric use, especially since

the early 1980s when it replaced aspirin in pediatric

practice, acutely impairs glutathione metabolism, which

suggests it could be a potential risk factor in autism [56];

it was shown (though with disagreement in a letter to the

editor) to be associated with autistic disorder in young

children with regression in development [57,58]. Treat-

ment in an open-label trial of abnormal glutathione status

with methylcobalamine and folinic acid in children with

ASD showed efficacy in moving glutathione status less

remote from normal, and improvement in Vineland Adap-

tive Behavior score was used to support a double-blind

placebo-controlled trial now underway [54]. However,

although these studies suggest metabolic vulnerabilities

pertinent to environmental insults, for the most part they

have not included direct measures of potential environ-

mental triggers of these pathophysiological alterations;

such linkages would likely require larger scale funding

and more systematic support of collaboration.

Metabolic alterations consistent with vulnerability to

heavy metal and xenobiotic toxicity have also been

observed. A reduced zinc–copper ratio was measured

in a substantial cohort of children with ASD; such a

reduction may indicate inadequate metallothionein func-

tion, leading to impaired metal binding and increased

vulnerability to metal toxicity [59]. Elevated porphyrins,

which have been regarded as markers of xenobiotic and

metal (lead, mercury) exposure, have been measured in

several cohorts of children with ASD [60,61]. A number

of studies have emphasized the lack of connection of

vaccines or mercury in vaccines with the increased preva-

lence of autism [62–67]. One study showed a lack of

difference in blood levels of mercury between ASD and

control groups, though the authors pointed out that their

measure only reflected recent exposures and their find-

ings were not sensitive to more chronic exposures and not

pertinent to questions of causation [68]. Others argue that

there are legitimate concerns about the impact of even

low levels of chronic mercury exposure [69] and that

much divisiveness, public suspicion of the health estab-

lishment, and possibly harm could have been avoided by

an early decision to reduce exposure to thimerosal in

vaccinations based on prior removal of this substance

from topical medications, as well as development of a

more coherent environmentally responsive research

agenda for autism [70].

There are also findings possibly consistent with oxidative

stress and immune activation in the central nervous

system. Pertinent neuropathological findings, although

preliminary and in small samples, include elevated
rized reproduction of this article is prohibited.
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cerebellar 3-nitrotyrosine [71], reduced neuronal density

with increased glial density and lipofuscin in language-

related cortex [72], and immunocytochemical detection

of three markers of oxidative injury and lipid peroxi-

dation in ASD brain tissue [73]. An earlier landmark

paper documenting innate immune activation and abnor-

mal cytokines in post-mortem brain tissue [74] received

some support by independent documentation of increased

innate and adaptive immune activation in ASD brain tissue

[75]; such neuroimmune changes can have a relationship

with environmental toxins [76] from exposures such as air

pollution [77–79]. The great heterogeneity in ASD may

relate at least in part to the many different types of such

contributors that could contribute etiologically to autism’s

defining behavioral characteristics.

Various brain imaging findings can also be interpreted as

consistent with central nervous system tissue disturb-

ances such as immune activation or oxidative stress.

Although the highly replicated phenomenon of early

rapid brain enlargement in a substantial subset of indi-

viduals with autism [80,81] has led to the inference that

this size increase would be accounted for by a greater

number of neurons and myelinated axons in ASD brains,

imaging findings are beginning to suggest the opposite.

The strong predominance of findings in magnetic reson-

ance spectroscopy is of reduced density of metabolites

[82�]. This, along with the reduced fractional anisotropy

and increased diffusivity in diffusion imaging of white

matter [83,84], suggests a reduction rather than an

increase in neuronal and white matter integrity, cell

number or density; tissue changes that could lead to

such signal could derive from oxidative stress, neuroin-

flammation, or edema. Such potentially environmentally

mediated tissue pathophysiology might also contribute to

reduced cerebral perfusion, with recent single photon

emission computed tomography (SPECT) studies [85,86]

supporting prior documentation of hypoperfusion in a

dozen and a half earlier papers.

Dietary factors are also under consideration as environ-

mental contributors to ASD. A several-fold reduction in

the proportion of v-3 fatty acids in lipid intake over the

past few generations, and potential exacerbation of the

impact of this deficiency by gastrointestinal disturbances

in ASD [87], may contribute to abnormal fatty acid

profiles in ASD [88] that could affect neuronal processing

[89], though rigorous evidence for the efficacy of essential

fatty acid supplementation in ASD is still weak [90].

Nutritional insufficiencies that may reduce the availabil-

ity of substrates for neuronal metabolism and increase

vulnerability to oxidative stress [91] may result from self-

restriction of intake common in ASD [92], and this may

be further complicated by ingestion of toxicants and

heavy metals as food contaminants [91]. Earlier work

documented abnormal clostridial colonization in regres-
opyright © Lippincott Williams & Wilkins. Unauth
sive ASD as well as transient behavioral improvement

with eradication of these organisms [93,94]. Based on this

work and concerns more broadly about rises in clostridial

infection [95], as well as the impact of gut microbiota on

human health and environment on the microbiota [96],

rodents were injected with propionate (a major byproduct

of clostridia as well as a common food preservative) and

manifested autistic-like manifestations at multiple levels,

including social isolation, reduced play behavior, oxi-

dative stress, and a brain neuroinflammatory response

[97,98]; this model system may be applicable to many

other environmental exposures.

The dynamic nature of autism symptoms and their

severity, including both regression in early childhood

and improvement or even loss of diagnosis, suggest a

potential role for environmental factors in modulating the

pathophysiology underlying autism well after the period

of in-utero and early postnatal development [1]. A sur-

prising report of improvements in core features of ASD in

the setting of fever [99] prompted much reflection on

underlying neurobiological mechanisms such as cytokine

alteration or lipid membrane fluidity changes that might

permit such dynamism in what had previously been

considered a static encephalopathy [100,101�]. One pro-

vocative paper suggested that this phenomenon may

derive from developmental dysregulation of the locus

ceruleus-noradrenergic system, that is widely distributed

and can cause rapid state alterations, and that may be

transiently restored to normal regulation during fever

[102]. The phenomenon of loss of diagnosis and ‘recov-

ery’ has also been discussed, not only in widespread

anecdotal reports but now also in academic literature,

with a review of the implications of ‘recovery’ [103�] and

case series documenting loss of rigorously documented

diagnosis [104]. One study reported that recovery occurs

in 19% of cases of early autism diagnosis, which may

reflect some combination of true improvement, matu-

ration, and overdiagnosis [105].
Conclusion
A line of inquiry is developing aimed at making sense of

the increasing prevalence of ASD, the failure to fully

account for this increase by factors such as diagnostic

substitution, a growing body of evidence demonstrating

the role of gene–environment interactions in ASD, envir-

onmentally vulnerable physiology in ASD, and a wide

range of contributory environmental factors. All of these

support the need to increase our attention to environment

and vulnerable physiology in ASD. Environmental influ-

ences on physiology might begin in utero and might

thereby contribute to alterations in brain and other body

systems development and involve epigenetic changes.

But given the documentation of potentially environmen-

tally modulated active pathophysiology later in childhood
orized reproduction of this article is prohibited.
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and into adulthood, it is reasonable to devote more

attention to environmental influences that could modu-

late encephalopathy, that is, physiological brain function,

in ASD in an ongoing and active fashion [101�,106],

starting preclinically in infancy before it is possible to

identify clear autism symptoms, and continuing further

throughout the lifespan. Through environmental modi-

fication, including medical intervention, it may be

possible to avoid or limit the triggering or aggravation

of vulnerabilities and thereby to reduce both prevalence

and suffering in this complex and challenging syndrome.
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