Preconception Omega-3 Fatty Acid Supplementation and the Prevention of Toxicant-Associated Preterm Birth in a Mouse Model

Kaylon L. Bruner-Tran, PhD, Kevin G. Osteen, PhD

Vanderbilt University Medical Center Women's Reproductive Health Research Center Nashville, TN USA Dioxin or TCDD (2,3,7,8-tetrachlorodibenzo-*p*-dioxin)

- By-product of industrial processes
- Known endocrine disruptor
 - Mimics estrogen; inhibits progesterone action
- "Agent Orange"—herbicide contaminated with TCDD
- Vehicle fuel combustion
- Bioaccumulates within the food chain

Impact of in utero TCDD

Slide #3

Nayyar et al, 2007; Bruner-Tran and Osteen, 2011

A History of Fetal Exposure to TCDD is Associated with Preterm Birth in a *Subsequent* Adult Pregnancy

Mating Scheme	Pregnancy	Pregnancy Outcome	
		Full-term	Preterm
Control Female / Control Male	100%	100%	0%
F1 Female / Control Male	39%	64	36
Control Female / F1 Male	47%	61	39
F1 Female / F1 Male	0%		

Preterm birth was defined as spontaneous parturition >24 hrs prior to E20.

Slide #4

Ding et al, 2011

Placental Inflammation and Timing of Human Parturition

- Placental inflammatory signals may regulate timing of parturition
- Placenta is largely derived from *paternal* genes
- Normal human placenta at end of pregnancy
 - Increased expression of multiple TLRs
 - Decreased expression of PR

Impact of Developmental TCDD Exposure on PR Expression at the Maternal-Fetal Interface

Ding et al, 2011

Our data indicate that TCDD-mediated preterm birth in mice is associated with a hyper-inflammatory response within the placenta, *regardless of which parent was exposed*.

Can we reduce the inflammatory response? Limited options for pregnant patients.

Nutritional Intervention -anti-inflammatory -membrane fluidity -brain development

Omega-3 Fatty Acid Supplementation During Pregnancy

- 200-300 mg/day DHA/EPA recommended for all pregnant women
- Women "at risk" of PTB:
 - DHA/EPA supplementation should be initiated at 20-24 weeks
 - 1.5-3.0 g/day/DHA/EPA
 - Results from studies to date are inconclusive

Our data suggests omega-3 fatty acid supplementation prior to establishment of the maternal-fetal interface may be more effective.

Preconception Fish Oil

Pregnancy Outcomes following Preconception Fish Oil Supplementation of Male F1 Mice

Exposure	Pregnancy Rate	Pregnancy Full-Term	Outcome Preterm
Vehicle Only	100%	100%	0%
Vehicle + Fish Oil	100	100	0
F1 male	49	61	39
F1 male + Fish Oil	80	100	0

McConaha et al, 2011

Impact of Fish Oil Supplementation on Placental PR and TLR-4 mRNA Expression

Slide #11

McConaha et al, 2011

Conclusion

 Dietary modification prior to the establishment of the maternal-fetal interface and which *includes both parents* should ne examined for the prevention of preterm birth in women.

Acknowledgements

Vanderbilt University

- Bruner-Tran Laboratory
 - Mindy McConaha, MS
 - Tianbing Ding, PhD
- Kevin G. Osteen, PhD

Texas A&M

Joe Arosh, PhD

Supported by:

- NIEHS
- NCCAM
- The International Endometriosis Association