What is “Developmental” About “Developmental Neurotoxicology”

David C. Bellinger
Boston Children’s Hospital
Harvard Medical School
Harvard School of Public Health
Boston, MA, USA
What We (Think We) Know About Children and Chemicals

Neurodevelopmental Effects

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Little or None</th>
<th>Some</th>
<th>Considerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little or None</td>
<td>waste sites</td>
<td>manganese</td>
<td></td>
</tr>
<tr>
<td></td>
<td>incinerators</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solvents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some</td>
<td>cadmium</td>
<td>OPs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dioxins</td>
<td>arsenic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>phthalates</td>
<td>PBDEs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bisphenol A</td>
<td>inorganic Hg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PFAAs</td>
<td>PAHs</td>
<td></td>
</tr>
<tr>
<td>Considerable</td>
<td>Elemental Hg</td>
<td>fluoride</td>
<td>lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MeHg PCBs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Little or None: Waste sites, incinerators, solvents, manganese
- Some: Cadmium, dioxins, phthalates, bisphenol A, PFAAs, OPs, arsenic, PBDEs, inorganic Hg, PAHs
- Considerable: Elemental Hg, fluoride, lead, MeHg, PCBs
Elements of a Developmental Perspective

1. Early stages of development shape and constrain the way in which subsequent development unfolds (developmental cascades)

2. Elements of a child’s developmental system influence the form and severity of adverse effects of neurotoxicant exposure (effect modifiers)

3. Early-life neurotoxicant exposure becomes an element of the context within which a child’s subsequent development occurs (neurotoxicant exposure as an effect modifier itself in later life)
1. Early stages of development shape and constrain the way in which subsequent development unfolds: “developmental cascades”

- Childhood Lead exposure
 - IQ
 - Executive function
 - Impulse control
 - Ability delay
 - Gratification

- Criminal activity

- School achievement
- ADHD, Conduct Disorder, substance abuse, injury
2. Form and severity of adverse effects of neurotoxicants influenced by other elements of the developmental system

- Co-exposures to other neurotoxicants (i.e., mixtures)
- Prenatal stress
- Nutrition
- Extent to which child-rearing environment fosters optimal development
 - effects of lead more pronounced on disadvantaged children
 - animal data suggest possible remediation strategies
3. Early-life neurotoxicant exposure reduces resilience to meet later neurological challenges

• reduces CNS “reserve capacity” available in adulthood
 • recovery from a photothrombotic stroke in hind limb parietal sensorimotor cortex slower in rats with early lead exposure (beam walking and proprioceptive limb placing)

• produces epigenetic changes eventually expressed as altered gene expression in adulthood
 • rats exposed to lead only as newborns show delayed overexpression, as adults, of the gene encoding the β-amyloid precursor protein

• accelerating neurodegenerative processes associated with aging
Conclusions

• Early-life exposure to neurotoxicants can affect myriad aspects of a child’s neurodevelopment;
 – adversities evident in childhood are only earliest stage of their unfolding; need to consider downstream effects
 – a lifespan approach necessary to appreciate full range of morbidities and burden associated with them; delayed neurotoxicity
• Exposure-related adversities responsive to context in which development occurs
 – suggests that viewing the adversities as “permanent” unduly pessimistic, ignoring possibilities of remediation by environmental manipulation
• Early-life exposure is, itself, a risk modifier, forming part of the context that determines the impacts of later physiologic and pathologic CNS events;
 – a child exposed early to a neurotoxicant likely to respond differently to a later insult than a child not similarly exposed