The DrugMatrix® Database

Scott S Auerbach, Ph.D., D.A.B.T.
National Toxicology Program at NIEHS

CHE Conference Call

13 December 2012
Disclaimer

The statements, opinions or conclusions contained herein do not necessarily represent the statements, opinions or conclusions of NTP, NIEHS, NIH or the United States government.
Outline

• Part 1: Overview of DM

• Part 2: Example Application of DM in a Short-term Toxicity Assessments
Part 1: Overview of DrugMatrix

- Gene Expression Profiles
 - CodeLink RU1 10K rat array
 - Affymetrix Whole Genome Arrays

- Pharmacology Profiles
 - Binding, Enzyme, ADME

- Pathology Profiles
 - Histopathology
 - Clinical chemistry
 - Hematology
 - Body and organ weights

- Literature Profiles
 - Pharmacology
 - Toxicology
 - Structure
 - Pathways

Benchmark Drugs and Compounds

Pathology Assays

Pharmacology Assays
DrugMatrix

- DrugMatrix
 - Large-scale Rat Toxicogenomics Database and Analysis Tool

- Originally owned by Iconix Pharmaceuticals and Entelos, Inc.
 - No data for these resources were generated by NTP

- Acquired by NTP in late 2010
Goals of Acquisition

• Make the computational and data resources open to the public (no fee)

• Facilitate the integration of toxicogenomics into hazard characterization

• Build a bridge between traditional toxicology and Tox21
DrugMatrix Database Content

~ 700 Short-term toxicity studies (0.25 to 5 days) in male SD rats
~ 637 compounds studied at multiple doses, time points and tissues
~ 5600 drug-treatment transcript profiles
~ 13,000 Codelink RU1 Microarrays
~ 5,000 Affymetrix RG230-2 Arrays
~ 127,000 histopathology measurements
~ 150 histopathology diagnoses over 7 tissues
~ 100,000 hematology and chemistry measurements
~ 138 hand annotated pathways
~ 290 scorable genomic signatures
~ 2500 pathway-based scorable signatures
~ 130 in vitro assays
~ 900 chemicals with detailed literature curation
~ 8000 chemical structures
~ 60,000 literature facts
~ 123,000 frozen samples
DrugMatrix Chemical Diversity

- 637 Compounds
- US FDA approved drugs, 433, 68%
- Standard biochemical, 15, 2%
- Approved outside of US, 63, 10%
- Standard toxicant, 72, 11%
- Withdrawn or discontinued drug, 54, 9%
DrugMatrix Data

- ftp://anonftp.niehs.nih.gov/drugmatrix
- Unprocessed microarray data
- Microarray data normalized by organ
- Individual animal toxicology data
- In vitro screening data
- Chemical Annotations
DrugMatrix Functionality and Analysis Tools

• Upload your own data for analysis or mine the DrugMatrix data
 – Data you upload is private – not shared with the government or other users

• Contextualize your data relative to over 4000 expression profiles elicited by >600 well characterized, phenotypically anchored prototype agents

• Find similar expression profiles

• Determine significantly up and down regulated genes

• Perform gene ontology analysis of perturbed genes

• Visualize expression profiles on pathways

• Score expression profiles for >50 phenotypes with genomic signatures

• Construct expression patterns for putative biomarker sets

• Test the performance of biomarker sets for detecting phenotypes

• Find consistently changed genes

• Identify enriched literature annotations in groups of expression profiles

• Mine the literature
Part 2: Example Application of DrugMatrix

Toxicogenomic Assessment of DE-71
(Study Scientist: Dr. June Dunnick)
DE-71: A mixture of polybrominated diphenyl ethers

- PBDEs are flame retardant components that bioaccumulate; persistent organic pollutants
- Widespread human exposure
Gene Expression Study design

- Dose level: 0 or 50 mg/kg/day
- Route: Oral Gavage (corn oil)
- Model: Male Wistar Han rats
- Exposure period: gestational day (GD) 6 to postnatal day (PND) 21
- Euthanized: PND 22
- Tissue evaluated: Liver
- Question: What are the potential toxicological effects of DE-71 that can be identified by toxicogenomics?
- DE-71 expression studies are not included in DrugMatrix Database
DrugMatrix Analysis of DE-71- Top DEGs (Liver)

Induced
- Cyp1a1, Cyp2b, Cyp2c

Repressed
- Fgf21, Cyp17a1, Abcg8
DrugMatrix Analysis of DE-71- Signature Scoring

Table: DE71_21.0D_50.OMG/KG_LIVER

<table>
<thead>
<tr>
<th>Signature Name</th>
<th>SP Score</th>
<th>Posterior</th>
<th>Logit</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic hypertrophy, centrilocular LIVER RG230-2 ASPLP ToxFX,1.2.4</td>
<td>2.668</td>
<td>0.999835654...</td>
<td>6.9067547...</td>
<td>RG230-2</td>
</tr>
<tr>
<td>Hepatic lipid accumulation, centrilocular LIVER RG230-2 SPLP ToxFX,1.2.4</td>
<td>0.93</td>
<td>0.902890876...</td>
<td>2.2297663...</td>
<td>RG230-2</td>
</tr>
<tr>
<td>Hepatic lipid accumulation, macrovesicular LIVER RG230-2 ASPLP ToxFX,1.2.4</td>
<td>0.482</td>
<td>0.873777575...</td>
<td>1.9347802...</td>
<td>RG230-2</td>
</tr>
<tr>
<td>Hepatic lipid accumulation, periportal LIVER RG230-2 SPLP ToxFX,1.2.4</td>
<td>0.192</td>
<td>0.776136029...</td>
<td>1.2432892...</td>
<td>RG230-2</td>
</tr>
<tr>
<td>Hepatomegaly LIVER RG230-2 ASPLP ToxFX,1.2.4</td>
<td>0.292</td>
<td>0.775934833...</td>
<td>1.2421316...</td>
<td>RG230-2</td>
</tr>
</tbody>
</table>

Images:

Rat Liver - Oil Red O

DrugMatrix Analysis of DE-71- Chemical Enrichment Analysis

- Chemical ontology enrichment analysis of the top 25 most similar expression studies (Hypergeometric Analysis)

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>TERM</th>
<th>PVALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH_LEVEL_3</td>
<td>aromatase *</td>
<td>4.17E-06</td>
</tr>
<tr>
<td>MECH_LEVEL_2</td>
<td>Inhibit estrogen biosynthesis *</td>
<td>4.44E-06</td>
</tr>
<tr>
<td>SOLVENT</td>
<td>CMC .5 %</td>
<td>8.35E-06</td>
</tr>
<tr>
<td>ADVERSE_EFFECT</td>
<td>BBM_2_Bone Marrow Toxicity</td>
<td>1.07E-06</td>
</tr>
<tr>
<td>ADVERSE_EFFECT</td>
<td>NEU_1_Ataxia</td>
<td>3.35E-06</td>
</tr>
<tr>
<td>ADVERSE_EFFECT</td>
<td>END_2_Acute Intermittent Porphyria</td>
<td>1.07E-06</td>
</tr>
<tr>
<td>ADVERSE_EFFECT</td>
<td>KID_3_Acute Tubular Necrosis</td>
<td>1.07E-06</td>
</tr>
<tr>
<td>STRUCTURE_ACTIVITY</td>
<td>NSAID, COX-3, antipyrine like</td>
<td>1.07E-06</td>
</tr>
<tr>
<td>STRUCTURE_ACTIVITY</td>
<td>Estrogen antagonist, aromatase inhibitor *</td>
<td>6.99E-07</td>
</tr>
</tbody>
</table>

* DE-71 has been shown to alter aromatase activity in number of studies
DrugMatrix Analysis of DE-71- Pathway Analysis

<table>
<thead>
<tr>
<th>Pathway</th>
<th>% Gene Changed in Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol Biosynthesis</td>
<td>75</td>
</tr>
<tr>
<td>Xenobiotic Metabolism</td>
<td>52</td>
</tr>
<tr>
<td>Bile Acid Synthesis</td>
<td>50</td>
</tr>
</tbody>
</table>

Multiple subchronic studies have observed increases in serum cholesterol following DE71 exposure
Part 2: Conclusions

• Identified 3 hepatic/non-hepatic toxicological effects of DE-71
 – Steatosis
 – Repro-related endocrine perturbations
 – Alterations in lipid homeostasis
 – Overall profile suggests DE-71 may exacerbate metabolic syndrome

• Suggestion of an AhR, CAR/PXR related MOA

• Helps focus future toxicological assessments
Acknowledgments – Iconix and Entelos

<table>
<thead>
<tr>
<th>Eser Ayanoglu</th>
<th>Susanne Baumhueter</th>
<th>Luke Birdeau</th>
<th>Keith A. Bostian</th>
<th>Lindsay Brady</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naiomi Breckenridge</td>
<td>Richard Brennan</td>
<td>Leslie J. Browne</td>
<td>John T. Calvin</td>
<td>Gwo-Jen Day</td>
</tr>
<tr>
<td>Shane Dunlea</td>
<td>Alan Engelberg</td>
<td>Barrett P. Eynon</td>
<td>Joe Ferng</td>
<td>Mark R. Fielden</td>
</tr>
<tr>
<td>Susan Y. Fujimoto</td>
<td>Brigitte Ganter</td>
<td>Moni Ghosh</td>
<td>Jeremy Gollub</td>
<td>Li Gong</td>
</tr>
<tr>
<td>Donald N. Halbert</td>
<td>Christopher Hu</td>
<td>Radha Idury</td>
<td>Kurt Jarnagin</td>
<td>Kala Jayaram</td>
</tr>
<tr>
<td>Michael S. B. Judo</td>
<td>Kyle L. Kolaja</td>
<td>May D. Lee</td>
<td>Christopher McSorley</td>
<td>Herb Moore</td>
</tr>
<tr>
<td>Ramesh V. Nair</td>
<td>Georges Natsoulis</td>
<td>Peter Nguyen</td>
<td>Simone M. Nicholson</td>
<td>David O'Reilly</td>
</tr>
<tr>
<td>Michael Peachey</td>
<td>Cecelia I. Pearson</td>
<td>Hang Pham</td>
<td>Michael M. Quach</td>
<td>Jacques Retief</td>
</tr>
<tr>
<td>Alan H. Roter</td>
<td>David Sciacero</td>
<td>Patricia Siu</td>
<td>Dongxu Sun</td>
<td>Silke Thode</td>
</tr>
<tr>
<td>Alexander M. Tolley</td>
<td>Richard Tso</td>
<td>Stuart Tugendreich</td>
<td>Antoaneta Vladimirova</td>
<td>Bonnie Wong</td>
</tr>
<tr>
<td>Jian Yang</td>
<td>Zhiming Zhou</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

- **NTP/NIEHS**
 - John Bucher
 - Beth Bowden
 - Jo Ann Lewis
 - Cheryl Thompson
 - Raymond Tice
 - Mary Wolfe

- **SRA**
 - Dan Svoboda
 - Dan Whitley
 - Tony Calore
 - Henry Norris