Evaluation of Precautionary Controls for Occupational ELF Magnetic Fields in Dutch Workplaces

Joseph Bowman* and Yvette Christopher – de Vries**

*U.S. National Institute for Occupational Safety & Health (NIOSH)
**Institute of Risk Assessment Sciences, Utrecht, the Netherlands

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety & Health and should not be construed to represent any agency determination or policy.
Problem

- Magnetic fields at extremely low frequencies (ELF=3-3000 Hz) are Possibly Carcinogenic to Humans

- WHO’s *Environmental Health Criteria* on ELF-MF:
 “low-cost precautionary procedures to reduce exposures [are] reasonable and warranted …”

- However, precautionary methods for reducing workplace exposures are lacking
Resolution – NIOSH project

- NIOSH risk assessment of cancers from occupational ELF-MF [Bowman et al. 2012]
 - Risk of dying prematurely decreases by $0.32\% \pm 0.29\%$ per 1 μT reduction in TWA magnetic fields
 - Reducing TWA exposures above 0.3 μT can be cost-effective
- Pilot study of precautionary exposure reductions in the Netherlands
- Publish comprehensive NIOSH document on ELF-EMF:
 - RELs based on proven neurological effects
 - Recommendations on electromagnetic interference with implants
 - Precautionary recommendations for possible cancer risks
Goals of Dutch pilot study

• Develop precautionary methods for reducing TWA exposures to ELF magnetic fields, and evaluate their effectiveness.

• Develop messages that will persuade industrial hygienists, employers, and workers to voluntarily adopt precautionary exposure reduction measures.
Study Design

1. From an ELF-MF survey of 45 Dutch workplaces, recruit 3 companies with 8+ workers with TWA > 0.3 µT.

2. From survey monitoring and walkthrough measurements, design cost-effective reductions in long-term TWA..

3. Persuade company to train workers on work practices to reduce possible cancer risks.

Tools for Designing Controls

- Personal monitoring with task log
 - High exposure tasks
 - Duration of exposure
- Spot measurements
 - Identify sources
 - Fall off with distance
- Basic IH principles: ↑ distance, ↓ time, ↓ reps
- Modeling
Exposure Analyses

• **Unit of exposure:** Mean TWA for homogenous exposure groups (HEG)
 – Confidence limits derived from between- and within-worker variances

• **Risk metrics from NIOSH risk assessment**
 – Percent of excess deaths from cancers
 – Costs to the economy
 – Comparison with proven carcinogens
 • Ionizing radiation, benzene, ethylene oxide
Worker Training Presentations

- *Train the trainer* model
- Guided by *CDC Clear Communication Index*
- **Outline**
 - What are magnetic fields?
 - Health risks
 - Proven ➔ European limits
 - Possible ➔ precautionary measures
 - How worker can reduce exposure

#aihce

AIHce2014 + STEWARDSHIP

Evolution & Journey to a Safer Tomorrow
Results – Company participation

<table>
<thead>
<tr>
<th>Request Description</th>
<th>Requests</th>
<th>Participants</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-measurements for survey study</td>
<td>66</td>
<td>35</td>
<td>53%</td>
</tr>
<tr>
<td>Walkthrough for precautionary study</td>
<td>18*</td>
<td>4</td>
<td>22%</td>
</tr>
<tr>
<td>Presentation to IHs and foremen</td>
<td>4</td>
<td>3</td>
<td>75%</td>
</tr>
<tr>
<td>IHs agree to worker training</td>
<td>3</td>
<td>2</td>
<td>67%</td>
</tr>
<tr>
<td>Management agrees to training and post-measurement</td>
<td>2</td>
<td>1</td>
<td>50%</td>
</tr>
</tbody>
</table>

Companies with TWAs > 0.3 µT in at least 2 occupations
Participating companies and strong ELF magnetic field sources

<table>
<thead>
<tr>
<th>RR car refitting plant</th>
<th>Magnetic fault testers, induction heaters, induction furnace, arc welding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto body plant</td>
<td>Spot resistance welding, arc welding, electric power center</td>
</tr>
<tr>
<td>Plastics company</td>
<td>Chlorine electrolysis cells, rectifier room, electric power center</td>
</tr>
<tr>
<td>Paper mill</td>
<td>Generator, transformers, large motors, arc welding, electric fork lift</td>
</tr>
</tbody>
</table>

#aihce
Precautionary measures

RR car refitting plant

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure reduction measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction furnace</td>
<td>Install remote control</td>
</tr>
<tr>
<td>Handheld fault tester</td>
<td>Purchase lower emission model</td>
</tr>
<tr>
<td>Metal induction heater</td>
<td>Increase distance when operating</td>
</tr>
<tr>
<td>Arc welder</td>
<td>Do not run cable over the shoulder</td>
</tr>
</tbody>
</table>

Spot measurements determine control’s position

Cable crossing the body

#AIHce2014+STEWARDSHIP

Evolution & Journey to a Safer Tomorrow
Precautionary measures
Auto body plant

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure reduction measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc welding</td>
<td>Do not run cable over the shoulder</td>
</tr>
<tr>
<td>Manual spot welding</td>
<td>Re-design process</td>
</tr>
<tr>
<td>Robotic spot welding</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td>Power center</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td>Other jobs</td>
<td>Training on EMF hazards and exposure reduction</td>
</tr>
</tbody>
</table>

Control: Place metal parts into jig and step back to weld
Precautionary measures

Plastics plant

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure reduction measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine cell hall</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td></td>
<td>Install video cameras to decrease inspections</td>
</tr>
<tr>
<td></td>
<td>Turn surrounding cells off during repairs</td>
</tr>
<tr>
<td>Power center</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td>Rectifier room</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td>Other jobs</td>
<td>Training on EMF hazards and exposure reduction</td>
</tr>
</tbody>
</table>

![Electrolysis cell hall](image)

Rectified Magnetic Field

<table>
<thead>
<tr>
<th>Magnetic field (mT)</th>
<th>Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
</tr>
<tr>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

#aihce

AIHce2014 + STEWARDSHIP

Evolution & Journey to a Safer Tomorrow
Electric-work-only Zones in the electrolysis cell hall

- Decrease time in high field areas

- Work practices for electric-work-only zones:
 - First prepare all tools
 - Step out of zone for other tasks
 - Do not take any safety risks.

#aihce

AIHce2014 + STEWARDSHIP
Evolution & Journey to a Safer Tomorrow
Precautionary measures

Paper mill

<table>
<thead>
<tr>
<th>Source</th>
<th>Exposure reduction measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power plant</td>
<td>Electric-work-only zones</td>
</tr>
<tr>
<td>Transformers by walkway</td>
<td>No-go zone</td>
</tr>
<tr>
<td>Arc welding</td>
<td>Do not run cable over the shoulder</td>
</tr>
<tr>
<td>Maintenance mechanics</td>
<td>Identify sources to avoid, e.g. large motors</td>
</tr>
<tr>
<td>Other jobs</td>
<td>Training on EMF hazards and exposure reduction</td>
</tr>
</tbody>
</table>

19.0 µT

Do not go into *no-go zone* except for work.
Effects on exposures – *Paper mill*

- MF JEM [µT]
 - Welder: 0.83
 - Electrician: 0.44
 - Mechanic: 0.21
 - Paper mill: 0.20

-72%
Lessons Learned – Controls

• Low-cost measures can substantially reduce TWA magnetic field exposures
• Measures designed with basic IH principles + monitoring and walkthrough data
• Developed models for setting boundaries on electric-work-only & no-go zones
• Workers easily trained to identify high-field sources
Results – Company participation

<table>
<thead>
<tr>
<th>Requests</th>
<th>Participants</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-measurements for survey study</td>
<td>66</td>
<td>35</td>
</tr>
<tr>
<td>Walkthrough for precautionary study</td>
<td>18*</td>
<td>4</td>
</tr>
<tr>
<td>Presentation to IHs and foremen</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>IHs agree to worker training</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Management agrees to training and post-measurement</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Companies with TWAs > 0.3 µT in at least 2 occupations
Lessons Learned – Barriers to Implementation

Reasons for not participating

- Controversy over science
- The C word
- Different than OEL compliance
- Not a regulation
- Other risks are higher priority

Replies

- Cite WHO, etc.
- Cancers raise concerns
- Precaution is a new paradigm
- Goodwill value with workers and community
- Wait until EMF and cancer is a priority

Lesson: Message needs improvement.
Next Steps

• Focus groups with IHs to improve message
• Create EMF control bands
 – Link controls suggested by Dutch study to the EMF \textit{Source Exposure Matrix} from our cancer epidemiology studies
• Complete draft \textit{Current Intelligence Bulletin}, so the review / approval process can start
Questions?

For more information, write me at

J Bowman@cdc.gov

Acknowledgements.

Travel paid by a grant from the ZonMW institute of the Dutch government.
The essential contributions from Wendy Vercrujsse and Prof. Hans Kromhout at the Institute of Risk Assessment Sciences at Utrecht University in the Netherlands are gratefully acknowledged.