The Ecology of Breast Cancer: Opportunities for Prevention

Ted Schettler MD, MPH Science and Environmental Health Network <u>www.sehn.org</u>

The promise of prevention and the hope for healing

Ted Schettler MD, MPH

Available for free download at:

www.sehn.org

www.healthandenvironment.org

Hard copy for purchase:

Amazon

Outline

- An ecologic framework for breast cancer
- Looking within the complexity
 - Generally-accepted risk factors
 - Diet, nutrition
 - Exercise, physical activity
 - Environmental chemicals
 - Vitamin D, the electromagnetic spectrum
 - Stress
- Putting it together: Designing for prevention

Why an ecologic framework?

- Breast cancer is a systems problem requiring a systems response
- Multi-dimensional; multi-factorial
- Interactions and relationships are important
- History and time
 - What explains changing breast cancer incidence and patterns? Migration studies.
 - Early life events can influence vulnerability or resilience
- Lessons from the ecological sciences—shaping the terrain; altering system conditions

Ecological (eco-social) framework

Multi-level "nesting"

Early life experiences; later life health

Diethylstilbestrol (DES) *in utero* associated with increased breast cancer risk Higher early life DDT exposures associated with higher breast cancer risk Severe childhood stress associated with increased breast cancer risk

Rates and trends in breast cancer incidence and mortality

TABLE 3. Rates and Trends in Incidence and Mortality and Cause-Specific Survival for Female Breast Cancer by Race/Ethnicity

	INCIDENCE		MORTALITY		5-YEAR CAUSE-SPECIFIC SURVIVAL
RACE/ETHNICITY	RATE 2006-2010	AAPC ^a 2006-2010	RATE 2006-2010	AAPC ^a 2001-2010	RATE 2003-2009
Non-Hispanic White	127.3	0.1 ^b	22.7	-1.8 ^c	88.6
African American	118.4	0.2 ^c	30.8	-1.6 ^c	78.9
Asian American/Pacific Islander	84.7	0.0	11.5	-1.0 ^c	91.1
American Indian/Alaska Native	90.3	-0.3	15.5	-0.4	85.4
Hispanic/Latina	91.1	-0.6 ^c	14.8	-1.7 ^c	87.0

^aAAPC indicates average annual percent change.

^bAAPC is for white women and is not exclusive of Hispanic ethnicity.

^cAAPC is significantly different from zero (P < .05).

Sources: Incidence rates: Copeland et al.⁸ AAPCs, mortality rates, and survival: Howlader et al.⁴

The female breast cancer incidence rate in Alaska Natives was 134.8/100,000 vs. 50.8/100,000 in the Southwest Indians (Arizona) from 1999–2004, the most recent complete data published. (Kaur, 2014) Al/AN women tend to be diagnosed at an earlier age than white women

Breast cancer prevention

- How do we frame this question?
- In individuals? At the population level?
- Prevention refers to strategies that lower risk
- Overall evidence points strongly to accumulation of risk through the life course, beginning during fetal development

Well-established risk factors

- Family history
- Genetic: BRCA1/2; others
- Personal history of BC
- Dense breast tissue
- Benign breast disease*
- Late age of first pregnancy; nulliparity (more cells at risk for longer time)
- Early age of puberty (higher estrogen levels later)*
- Later age of menopause
- Chest radiation*

- Recent oral contraceptive use
- Combination hormone
 replacement therapy
- Cigarette smoking
- Alcohol consumption
- Diet*
- Exercise/physical activity*
- Overweight/obesity* (postmenopausal)

(* potentially modifiable in childhood)

http://www.cabreastcancer.org/causes/index.php# ; Hiatt, et al. CEBP, 2014

Why do this?

- to acknowledge, communicate complexity
 - The anatomy of a system map confirms the multi-level, systemic nature of the problem
 - It highlights the need for broad and diversified efforts to study and change the dynamics of the system.
- to make sense of complexity.
 - Constructing a model helps in understanding the system
 - Once the top-level architecture of a model is grasped, it becomes a filter for identifying relevant variables and an aid to thinking about the further study

Why do this?

- to support the development of strategies to study and intervene
 - Study of a model suggests ways and places to intervene most effectively in the system.
 - These are: leverage points, feedback loops, and causal cascades, among others
 - Some uncertainty is inevitable within this complexity

Diet and breast cancer

- Common limits of studies:
 - Until recently, most studies have focused on adult diet and risk; individual micro- or macro-nutrients
 - Dietary pattern analysis is relatively recent
 - Most epidemiologic studies have included large preponderance of white women
 - Most studies have failed to address exercise as a confounder or effect modifier
 - No studies in people have examined whether diet modifies the response to environmental chemicals (animal studies show an interaction)

Dietary fat

- Higher amounts of saturated fat and trans fats modestly increase risk
- High omega 6/omega 3 FA ratio probably increases risk
- High dietary maternal omega 6s in pregnancy may also increase risk in offspring (higher estriol, testosterone levels)
- Substitution with omega 3s and olive oil is highly likely to be beneficial

Fruits, vegetables—adult diet

- Higher intake associated with risk (~25%)
- Higher soy consumption risk; effect size larger in Asians than Westerners
- WHEL interventional study of women with BC, higher baseline levels of carotenoids associated with improved prognosis

Dietary pattern

- Mediterranean dietary pattern
 risk
- PREDIMED: prospective; post-menopausal: Med diet + EVOO > 68% risk compared to control over 5 yr. followup
- "Westernized" dietary pattern generally associated with increased risk (variable effect size; differs among subtypes of cancer)

Childhood, adolescent diet

- whole soy food in childhood and adolescence
 ~50% breast cancer risk, mechanisms
- meat in adolescence > 22% breast cancer risk overall [pre- and post- menopausal (NHS II)]
- Substituting one serving/day of legumes for one serving/day of red meat was associated with a 15% lower risk among all women; 19% lower risk among premenopausal women

Childhood, adolescent diet

- dietary vegetable protein, fat, nuts in girls 9-15 associated with risk of <u>benign breast disease</u> (BBD) at age 30 (Growing Up Today Study)
- milk associated with risk of BBD and more rapid height growth (Berkey, 2013)
- BBD and more rapid height growth velocity
 risk of breast cancer
- Some evidence that childhood dietary meat and sugar sweetened beverages advances the age of puberty (newest, Jansen, 2016; GUTS)

Dietary fiber adolescence; breast cancer risk; NHSII

FIGURE 1

Multivariable* RR of BC (and 95% CI) associated with average intake of fiber in adolescence and early adulthood among women in the NHSII. Categories are quintiles of intake. Multivariable model

Farvid, Pediatrics, 2016

Exercise, physical activity

- Evidence from more than 30 studies
- Typical 20-30% BC risk reduction with 4 hours per week moderate exercise
- Benefits for both pre- and post- menopausal women
- Adolescent exercise most strongly associated with decreased risk of pre-menopausal breast cancer
- Mechanisms: weight control, altered hormone and growth factor levels, modified gene expression
- Exercise <u>after</u> diagnosis and treatment improves quality of life; many studies show reduced risk of all-cause or BC-specific mortality

Exercise, physical activity for cancer prevention

- 30-60 min. moderate-intensity exercise 5 days/wk; children and teens: 60 min daily
- Determinants of exercise levels:
 - Self-efficacy (confidence in ability): children, adolescents, and adults
 - Family and social support: particularly adolescents
 - Personal history of exercise; personal health; job strain; stress; overweight
 - Neighborhood safety, walkability, design, access to recreation facilities, transportation availability, aesthetics (adults)

Environmental chemicals

- About 75 yrs. ago, dimethylbenzanthracene (DMBA) was first used to induce mammary gland cancer in lab rodents (Huggins)
- Study of chemicals in humans slow to develop

 1970-1980s: single-women hairdressers; PVC mfg;
 Swedish factory using an anti-rust oil; Canadian GE lamp mfg.—higher incidence/mortality from breast cancer
- Over 200 chemicals are mammary gland carcinogens in animal studies (Rudel, 2007)
- Increasing evidence in epidemiologic studies

Environmental chemicals, pharmaceuticals

- Institute of Medicine (IOM)report (2011):
 - Sponsored by Komen; limited review
 - Strong evidence: HRT, current use of OCs, alcohol, tobacco smoke
 - Less strong but suggestive: other organic solvents, benzene, ethylene oxide, 1,3 butadiene, polycyclic aromatic hydrocarbons (PAHs)
 - Concerns but even more incomplete evidence:
 bisphenol A, cadmium, others

Occupations and breast cancer

- History: single women hairdressers (UK 1960's); metal working; PVC plant (1977)
- Working Women and Breast Cancer
 - www.breastcancerfund.org (1.5-6 fold increased risk)
 - Nurses (shift work, light at night, chemicals)
 - Teachers
 - Professional women
 - Radiological technicians
 - Firefighters
 - Women working with chemicals
 - Plastics, rubber, solvents, pesticides, textiles

Life-course approach

- Diethylstilbestrol (DES) *in utero* associated with increased risk of reproductive tract, breast cancers (~2 X higher risk BC after age 40) (Palmer, 2006)
- Higher early life exposure to DDT associated with increased risk of BC (3.7 X in utero, 5 X before age 14) (Cohn; EHP, 2007; JCEM, 2015)

Endocrine disruptors and breast cancer

- Some chemicals can influence breast development, tissue architecture, gene expression after developmental exposures (rodents, primates)
 DES, bisphenol A, perfluorinated cmpds, dioxin
- These changes can increase susceptibility to cancer in adulthood; e.g., BPA *in utero* increases susceptibility to DMBA-induced mammary cancer
- Atrazine and neonicotinoid pesticides promote aromatase production, activity (estrogen)

Caron-Beaudoin, 2016

Vitamin D and breast cancer

- Animal and in vitro studies
 - low dietary levels increase mammary gland tumors after exposure to carcinogen
 - Vitamin D reduces aromatase levels, promotes cellular differentiation and apoptosis in breast tissue
- Most but not all studies find lower levels of vitamin D associated with higher risk of BC
- A prospective study in Bogota found low vitamin D levels predictive of early onset puberty

Vitamin D

- Endocrine Society (>30 ng/mL 25(OH)D) and Institute of Medicine analysis (> 20 ng/mL) disagree on what constitutes an adequate level
- Inadequate levels of vitamin D are <u>common</u>
- American Academy of Pediatrics recommends that <u>all</u> breast-fed infants and formula-fed infants receive vitamin D supplement
- ACOG recommends testing women at risk of low vitamin D and supplementing as needed; large margin safety (IOM; adults up to 4000 IU D3 daily)

Vitamin D levels Alaska

- Vitamin D insufficiency is common in Alaska, particularly during winter months
- Alaskan natives who eat a traditional diet are more likely to have adequate vitamin D levels year around
- Younger people who do not eat traditional diet more likely vitamin D insufficient (Fohner, 2016)

Radiation, electromagnetic fields

- Ionizing radiation well-recognized risk factor for BC
- Radiofrequency radiation (cell phones) is <u>not ionizing</u> (does not break DNA bonds).
- IARC classifies RF radiation as "possibly carcinogenic in humans"—based on possible brain tumor risk.
- No studies of RF radiation from cell phones, towers, other wireless technologies) on breast cancer risk
- Anecdotal reports of breast cancer in women who carried cell phone in bras
- Quite easy to reduce exposures

Designing for breast cancer prevention

Intervening in the complexity

- Historical, life-course perspective
- Medical, behavioral interventions AND <u>multi-level</u> interventions; public health thinking
 - Opportunities: individual, family, community, society
 - <u>Shift system dynamics</u> (re-design the terrain)
 - <u>Population-wide shifts</u> more likely to be effective
 - Understanding cause-effect relationships will always be clouded by some degree of uncertainty
 - This should not be used as an excuse not to act, based on what we do know

Combined risk factor reduction

- Post-menopausal
 - EPIC (European Investigation into Cancer and Nutrition); >200,000 women followed prospectively; median follow up 11 yrs.
 - 20-25% reduction in breast cancer <u>incidence</u> with highest scores on combinations of healthy lifestyles (diet, exercise, weight control, smoking, alcohol) (McKenzie, IJC, 2014)

<u>Combined</u> interventions: women with breast cancer

- WHEL (Women's Healthy Eating and Living) study
 - Pre- and post-menopausal women (~3000)
 - Dietary intervention: plant-based & reduction in dietary fat
 - No effect on prognosis, but higher baseline carotenoids associated with delayed recurrence (average 7.3 yrs. follow up)
 - Over 10 yrs; higher fruit and vegetable consumption along with higher levels of exercise > reduced death rate by half (93% vs. 86% survival)
- [Three fairly large studies find no evidence of adverse effects of dietary soy on breast cancer prognosis and considerable evidence of a beneficial role]

Who?

- Individuals
- Health care providers and institutions
- Public health professionals and organizations
- Governments, legislators
- Schools
- Workplace
- Farmers; farm and agricultural policy
- City planners

Opportunities across the life-course: <u>cancer prevention begins in the womb</u>

- Diet, nutrition, the food <u>system</u>, food access; (emphasis on fruits, vegetables, nuts, legumes, whole grains, healthy fats); traditional foods?
- Breast feeding (good for mother and baby)
- Exercise, physical activity, <u>built environment</u>
- Optimize vitamin D levels (~30-50 ng/mL); —(AAP position)
- Avoid unnecessary radiation exposure
- Stress management; sleep; shift work

Opportunities across the life-course: cancer prevention begins in the womb

- Reduction and elimination of exposure to hazardous chemicals potentially linked to BC; more than alcohol, tobacco, HRT
- Known carcinogens
- Endocrine disruptors—e.g. BPA (ACOG policy addresses BPA, pesticides)
- Investigate occupational exposures

Endocrine disruptors: some sources

Cosmetics

(EWG database http://www.ewg.org/skindeep/)

- Other personal care products (e.g., parabens, triclosan)
- Bisphenol A: (linings of cans, thermal receipts, assorted plastics)
- Pesticides: food residues, home use, farm workers

Design <u>multi-dimensional</u> strategies

- Health care providers
 - Counseling on diet, activity, weight gain/loss, vitamin D
 - Identify "higher risk" for other preventive interventions
 - Balance risks and benefits
 - Environmental assessment and interventions (home, hobbies, workplace, community)
- Governments: guidelines, regulations, labeling, research
 - facilitate lactation, physical activity, food, chemical policies
- Community/Schools
 - lactation, physical activity, healthy food access
- Research: impacts of chemicals during developmental windows of vulnerability

Thank you

Ted Schettler tschettler@igc.org