Flame retardants are widely used in a variety of products to prevent and slow the spread of fire. While fire retardancy is important, some flame retardants, known as polybrominated diphenyl ethers or PBDEs, used in electronic and other products are leaving a lasting toxic legacy in people and the environment. With cost-effective and equally fire-safe alternatives available, it’s time to phase out PBDEs.

- Polybrominated diphenyl ethers, or PBDEs, are a class of flame retardant chemicals added to many consumer products found in the home, office, automobiles, and airplanes.
- The three mixtures used most widely are penta-BDE, octa-BDE, and deca-BDE.
- Commonly found in electronics, such as the plastic casings of TVs and computers, and used in some furniture foams, textiles, and kitchen appliances, industry voluntarily ended production in the United States of the formulations of penta and octa in 2004 after high levels were found in breast milk.
- Over fifty million pounds of the toxic flame retardant deca-BDE continue to be built into TVs, mattresses, and other products annually in North America.
- Deca-BDE is a developmental toxin and listed as possible human carcinogen.
- Many electronic companies have found safer substitutes and have phased out the use of PBDEs.

WHAT ARE TOXIC FLAME RETARDANTS?
Polybrominated diphenyl ethers, or PBDEs, are a class of flame retardant chemicals added to many consumer products found in the home, office, automobiles, and airplanes. The three most common commercial classes of PBDEs are penta-BDE, octa-BDE, and deca-BDE. PBDEs are also part of a broader chemical class called polyhalogenated aromatic hydrocarbons (PHAHs) which include other highly toxic chemicals such as PCBs and dioxins. PBDEs are intrinsically hazardous because of their chemical characteristics: (1) they are stable, meaning that they are persistent in the environment and do not break down easily; (2) they are lipophilic, meaning that they accumulate in fatty tissues of living organisms; and (3) they have toxic properties, including the potential to act as endocrine disruptors. Their persistence and fat solubility allow them to both bio-magnify and bio-accumulate, meaning that they build up in the bodies of animals and humans.

Increasing Levels
PBDE levels are increasing at an exponential pace, as they are still largely unregulated in the U.S.

- The highest known concentrations of PBDEs in human populations in the Arctic were found in Yupik women from the Yukon Kuskokwim Delta of Alaska.¹
- Levels of PBDEs in U.S. women’s breast milk are 10-100 times higher than levels in European women.²,³
- Concentrations of PBDEs have increased over the years in marine mammals due to atmospheric transport and bioaccumulation.³
HEALTH CONCERNS

Developmental Effects: Studies in laboratory animals indicate that neonatal exposure to PBDEs permanently damages learning and memory functions, impairs motor activity, and is linked to permanent behavioral aberrations and hyperactivity.3,5

Reproductive Effects: PBDE exposures have been correlated with cryptorchidism, or undescended testes in new born boys,6 and permanent impairment of sperm development in laboratory animal studies.7 Exposures have also been associated with the delay of puberty in both male and female laboratory animals and alterations in sexual development and gender-specific sexual behavior.7

Cancer: One study suggests that in utero exposure to PBDEs is associated with an increased risk of testicular cancer in men.8 The Agency for Toxic Substances and Disease Registry (ATSDR) lists deca-BDE as a possible human carcinogen based on the development of liver tumors in laboratory animals.9

Thyroid Problems: Recent animal studies have shown that PBDE exposure is linked to decreased circulating concentrations of thyroid hormone5 and to a decrease in thyroid weight in adult offspring.7

SAFER ALTERNATIVES ARE AVAILABLE

Alternatives to the use of PBDE flame retardants are available and cost effective. Alternatives include product redesign to eliminate the need for added chemicals. According to reports written by the states of Illinois, Maine, and Minnesota, there are affordable alternatives to deca-BDE for consumer electronics, residential upholstered furniture, and mattresses. In fact, many of these alternatives are already being used in the marketplace. For instance, Washington State estimates that roughly 57% of televisions and 95% of computer products do not contain deca-BDE.

Many companies are taking the lead in using safer alternatives, including Apple, Dell, Xerox, Ericsson, IBM, Intel, Motorola, Sony, Panasonic, Phillips, Sealy, Serta, Select Comfort, and many others. Here is what the leading companies are saying about eliminating deca-BDE in their products:

“All virgin plastics presently used by Sony are ‘deca-free’ (Decabromodiphenyl ether). These products meet all relevant fire safety standards.”
-Sony Electronics; March, 2006

“We currently avoid the use of BFRs (brominated flame retardants) by using plastics that can be flame retarded with non-halogenated compounds and by using design strategies that reduce the need to use flame retarded plastics at all.”
-Dell Computer Corporation; December 2005

“HP eliminated the use of two brominated flame retardants (BFRs) PBB and PBDE...HP has removed the remaining BFRs from the plastic housings of the vast majority of HP products.”
-HP; March 2006

“The use of PBDEs in mattresses today – which is limited already – will likely be voluntarily phased out entirely in the near future.”
-International Sleep Products Association; November 2003

References