Perspectives from the National Academy of Science: The Importance of Background

Gary Ginsberg
CT Dept of Public Health
December 15 2009
SCIENCE AND DECISIONS:
ADVANCING RISK ASSESSMENT

National Research Council
Committee on Improving Risk Analysis Approaches Used by EPA
Board on Environmental Studies and Toxicology
COMMITTEE

Thomas Burke (Chair), Johns Hopkins Bloomberg School of Public Health
A. John Bailar, Miami University
John M. Balbus, Environmental Defense
Joshua T. Cohen, Tufts New England Medical Center
Adam M. Finkel, University of Medicine and Dentistry of New Jersey
Gary Ginsberg, Connecticut Department of Public Health
Bruce K. Hope, Oregon Department of Environmental Health
Jonathan I. Levy, Harvard School of Public Health
Thomas E. McKone, University of California
Gregory M. Paoli, Risk Sciences International
Charles Poole, University of North Carolina School of Public Health
Joseph V. Rodricks, ENVIRON International Corporation
Bailus Walker Jr., Howard University Medical Center
Terry F. Yosie, World Environment Center
Lauren Zeise, California Environmental Protection Agency
Factors that Contribute to Risk

Community Factors
- Housing
- Medical Care
- Education

Host Factors
- Genetics, Age
- Lifestyle, Disease

Chemical Exp
- Air, water, soil, consumer prod, food

Disease??
Background exposures and underlying disease processes contribute to population background risk

→ can lead to linearity at the population doses of concern
Threshold Dose Response Curve

Toxic Effect

Dose

Non-Toxic

Toxic
Non-Threshold Dose Response Curve

Toxic Effect vs. Dose

- Background
- Toxic
Additivity to Background Aging, Disease or Vulnerability

• Chemical by itself: kidney damage in 200 out of 1000 workers at 100 ppm in air
• Chemical itself: no damage below 1 ppm
• However, backgrnd incidence = 10%
 – 100 workers at high risk – chemical increasing their odds of getting renal disease
• If backgrnd incidence were zero – there may not be any increase in risk at low dose
FIGURE 5-9 Population vulnerability distribution. Arrows represent hypothetical response to same toxicant dose for people at given level of functional decline unrelated to any particular toxicant. Vertical line represents presumed threshold between overt adverse and nonadverse effect in median person. Shaded area straddling line represents distribution of thresholds in population.
Background Created by

• Exposures to similarly acting chemicals
 – Add chemical exposures – together they may surpass a threshold

• Ongoing aging and disease processes
 – Decreased functional reserve
 – Decreased defenses
 – Degenerative processes are a toxic response
 • Lipid peroxidation, inflammation, cell death
Background Contribution is Source of Variability

- Risk assessment approaches to variability
 - Cancer - avg person
 - Non-cancer – 10 fold more sensitive than avg
 - Still a bright line that’s safe for everyone
- New thinking – everyone has a different threshold
 - Population level – no threshold – low doses may cause risk if there is additivity to backgrnd
Examples of Background Addition

• Particulate Matter and background of cardiopulmonary disease
• Ozone and airway hyperreactivity
• 1,4-Dioxane and pre-cirrhotic liver inflammation
• TCE and autoimmune dx –
 – Lupus mouse model
• Mercury and atherosclerosis
Other Sources of Variability

- Childhood (pre- and post-natal)
 - Intake rate, metabolism, clearance, windows of vulnerability
- Nutrition, life style, stress level
- Genetic variation
 - Metabolism
 - DNA repair
 - Host defenses
Research Challenges

• Understand how chemicals interact with aging, disease and susceptibility factors
• Understand how chemicals interact – more than just adding risk, but shifting threshold
• Incorporate this into RA to better protect vulnerable populations
• Keep in mind that current methods may not protect everyone
• Interim default approaches that are reasonably protective & set the stage for more refined models
Colleagues

• Chapter 5 Committee
 – Lauren Zeise, Jonathan Levy, John Bailar
• Children’s Issues
 – Melanie Marty
• USEPA
 – Bob Sonawane, Kate Guyton
 – Brenda Foos, Michael Firestone
• Clark University
 – Dale Hattis