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1 Introduction 
This consensus statement outlines the current scientific understanding of the links between environmental 
factors and learning and developmental disabilities. It also identifies important research areas that hold 
promise of further advancing our understanding of these links. This statement is intended as a guide to 
scientists, medical professionals, policymakers, public health advocates, and the general public in 
advancing their efforts to address the important individual and social issues raised by learning and 
developmental disabilities. 
 
Terms in orange underlined font are defined in a Glossary of Terms and Term Usage specific to this 
document, beginning on page 19. 
 
1.1 Purposes of the document 

 To review findings from diverse research 
disciplines concerning environmental 
contaminants and the biological basis of 
compromised learning and development, 
with special attention to critical recent 
discoveries in related basic sciences; 

 To identify conclusions that could be 
drawn with confidence from existing data; 

 To identify critical knowledge gaps and 
areas of uncertainty; 

 To establish key elements of a coherent 
research agenda to help fill these gaps and 
resolve uncertainties; 

 To form a foundation of current scientific 
knowledge upon which to make policy 
decisions that promote and protect an 
environment in which all children can 
reach and maintain their full potential. 

 
1.2 Scope and incidence of disorders 

Within the human brain lies our capacity to learn, 
talk, read, calculate, memorize, conceptualize, 
organize, pay attention, utilize motor skills, 
interact socially and behave appropriately. We 
cannot reach our full potential with a damaged 
brain or nervous system.  
 
Though many of the environmental contaminants 
discussed in this document can also undermine the 
healthy development of other biological systems in 
the body, such as the reproductive, endocrine and immune systems, this consensus statement is focused 
solely on the developing brain and nervous system. This distinction is somewhat artificial since the 
impact of toxicants upon these other systemic processes may have effects that feed back and impact brain 
function. Although it is often believed that endocrine function, for example, is independent of brain 
development, it is now clear that they are so closely entwined that endocrine toxicants are, in essence, 
neurodevelopmental toxicants. 

Children are not little adults 

 
 
 Environmental exposures start early: pre-

conception, during gestation (in utero 
exposure), via breast milk, infant formula 
and then through contact with the 
environment. 

 For their body weight, children eat and 
breathe more than adults, thus a small 
exposure translates into a big dose.  

 Their organ systems, particularly the 
nervous system, are forming and are thus 
more susceptible to the effects of 
chemicals. 

 Young children are prone to hand-to-mouth 
behaviors that expose them to higher levels 
of ambient chemicals. 

 Children rely on adults to ensure that they 
develop in an environment in which they 
can reach and maintain their full potential. 
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Other neurologically based disorders have also been shown to have environmental contributors, especially 
Parkinson’s disease (1-4), mental illness including schizophrenia (5), cerebral palsy (6) and epilepsy. This 
document focuses on learning and developmental disorders and does not address these conditions. 
 
1.2.1 Definitions of LDDs 
In this report, we define learning and developmental disorders broadly as conditions resulting from 
interference of normal brain development and function that adversely affect an individual’s performance. 
Learning and developmental disabilities (LDDs) include but are not limited to deficits in learning and 
memory, reduced IQ, attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, conduct 
disorders and developmental delays.  
 
1.2.2 Overview of brain development 
The development of the human brain begins in utero and continues through adolescence, following a 
precise and delicate step-by-step sequence involving complex neurobiological processes including the 
formation of the neural tube, cell proliferation, differentiation, migration and selection, synapse 
formation, development of neurochemical systems, cell pruning; and myelination. These processes 
ultimately involve 10 to 100 billion neuronal cells with many trillions of connections. The long and 
complex development of the brain and nervous system leaves it susceptible to the adverse effects of 
chemical exposures. 
 
Even minor changes in the structure or function of the nervous system can have profound consequences 
for neurological, behavioral and related body functions. Disruption of the brain’s normal development can 
happen in utero as a baby develops within the mother’s body or as the brain continues to develop from 
infancy through adolescence. Brain function 
can also be impacted in adulthood from an 
accident, trauma or exposure to 
neurotoxicants.  
 
1.2.3 Incidence 
Autism, attention deficit hyperactivity disorder 
(ADHD), dyslexia, mental retardation, 
lowered IQ and other disorders of learning and 
behavior are highly prevalent among 
American children. The incidence of learning 
and developmental disabilities (LDDs) 
appears to be rising, affecting between five 
and 15 percent of all children under the age of 
18 in the United States, or more than 12 
million children under 18 (7). In general, 
disabilities have increased significantly over 
the past four decades (8). 
 
These disabilities include disorders of 
learning, attention, emotional state and 
behavior. Mental retardation impacts two 
percent of children, or approximately 1.4 
million children (9-12). ADHD is conservatively estimated to occur in three to six percent, or 
approximately two million children (13) (14). A more recent study in the National Health and Nutrition 
Examination Survey (NHANES) found 8.7 percent of 8- to 15-year-old children met the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV-TR) criteria for ADHD based on parent recall (15). 

Critical recent discoveries 
 Even very low doses of some biologically 

active contaminants can alter gene expression 
important to learning and developmental 
function. 

 Exposures during fetal development can 
adversely affect learning and development of 
the individual and last a lifetime. 

 Humans are exposed to complex mixtures of 
chemicals that can interact to enhance adverse 
effects. 

 Due to genetic variation (polymorphisms) 
people differ in susceptibility to exposures. Not 
identifying and studying susceptible subgroups 
can result in failure to protect those at high 
risk. 

 Children are often more susceptible than adults 
to the effects of exposure to environmental 
agents. 
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Autism spectrum disorder is estimated to affect approximately 0.7 percent, or 450,000 children and 
appears to be 10 times more prevalent today than it was in the 1980s (16), although that estimate is still 
debated.  
 
These nonfatal disabilities that affect an individual for a lifetime can be classified as the “new 
morbidities,” and the prevalence in children is summarized in Figure 1 below. This figure presents a 
compilation of data from different sources (7, 15, 17-19), demonstrating the interrelation of these 
childhood conditions. 
 

Prevalence of the “New Morbidities” in United States Children 
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Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2.4 Impacts on individuals, families and society 
In children, developmental, learning, attention and behavioral problems can cause tremendous challenges 
for the affected children, their families and communities. Consequences include psychological and 
economic costs associated with learning delays, aggressive or otherwise inappropriate behavior, school 
dropout, teen parenting, substance abuse, unemployment, welfare dependency and involvement with 
juvenile and adult criminal justice systems (20).  
 
Attempts to calculate the costs of these childhood “morbidities” have only recently been undertaken (20, 
21). Providing special education services to students with disabilities amounted to $77.3 billion, or an 
average of $12,474 per student in 1999-2000, almost twice the cost per regular education student, which 
is almost 22 percent of the 1999-2000 total spending on all elementary and secondary educational 
services in the US (22) (for additional information see the Center for Special Education Finance (CSEF) 
at http://www.csef-air.org/).  
 

2 Historical Perspective 
The effects of chemicals on the nervous system have been recognized since ancient times. Most of the 
early reports were the results of high exposures in workers that led to debilitating conditions or even 
death. For example, 2000 years ago people knew that lead exposure “makes the mind give way.” As 
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science progressed, it was recognized that even small doses of some chemicals result in subtle nervous 
system impacts that affect an individual’s performance. Despite this knowledge, lead was added to paint 
and gasoline, removed only following considerable research that confirmed what was already known. 
Many investigations have now demonstrated that even small amounts of lead affect the developing 
nervous system (23).  
 
Similarly, the adverse effects of exposure to elemental mercury, recognizable because of its liquid silver 
appearance, which evaporates at room temperature and can be inhaled, were recognized in miners well 
before the common era. Subsequently, workers in the felt-hat industry, where mercury was used to 
process the fur, succumbed to its neurotoxic effects – truly an example of “mad hatters” (see Alice’s 
Adventures in Wonderland by Lewis Carroll). Organic mercury, formed by the conversion of inorganic 
mercury to methylmercury by bacteria, bioaccumulates in fish and is readily absorbed. Organic mercury 
exposures in Iraq in 1971 and in Minimata, Japan, beginning in the late 1950s revealed both the overt and 
more subtle effects of organic mercury on development and the nervous system. Even low doses of 
methylmercury damage the nervous system and cause neurobehavioral deficits (24-28).  
 
Exposure to a wide range of potentially hazardous chemicals from conception to death is now 
unavoidable. Approximately 3,000 chemicals are produced in quantities greater than one million pounds 
per year. For the majority of these chemicals little information exists about the potential effects on 
learning and development. There is good evidence that about 200 of these chemicals are adult 
neurotoxicants and another 1000 are suspected of affecting the nervous system (29) (see Figure 2, in part 
from (29)). Overall there has been a gross failure to require developmental neurotoxicity testing.  
 
 

 

What we don’t know about chemicals 
 

More than 
80,000 

unknown

~1,000 
suspected 

~200 with 
good 

evidence

~10 we know 
for sure 

 
Figure 2. 
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As our testing methods have become more sophisticated, the recognition of individual sensitivity and, in 
particular, the sensitivity of the developing nervous system to the effects of environmental agents has 
grown. The causes of and initiatives to prevent LDDs have received increased attention from national 
organizations (30-32), the government and academic researchers (20, 29, 33). A substantial recent 
initiative, the National Children’s Study, will examine the effects of environmental influences on the 
health and development of more than 100,000 children across the United States, following them from 
before birth until age 21, with the goal of improving the health and well-being of children 
(http://www.nationalchildrensstudy.gov/). 
 

3 Environmental Contributors to Disorders 
Many factors – heredity, gene expression, socioeconomic environment, infectious disease, nutrition, 
stress, drugs and chemical contaminants – contribute in complex ways to brain development and thus to 
the genesis of LDDs. There is growing evidence that the interaction of these factors is associated with or 
exacerbates a variety of developmental disorders (34-37). Of all the factors contributing to LDDs, 
chemical contaminants in the environment have historically been the least studied despite being the most 
preventable. We now have solid scientific evidence that a variety of environmental agents can adversely 
affect the nervous system. The impact of chemical contaminants on children is a worldwide issue and the 
focus of this document. 
 
The susceptibility of the developing nervous system to the adverse effects of environmental agents, and 
the need to take preventive measures were recently recognized by international researchers in the Faroes 
Statement (38). International groups have also developed statements on the developmental effects of 
metals and the need to take preventive action to protect public health (39). In addition, comprehensive 
reports have documented the effects of environmental agents on development (40).  
 
3.1 Timing of exposure 

A child’s developing nervous system is more sensitive to chemical exposures than the adult nervous 
system. This can be seen in the effects of alcohol: a pregnant woman who drinks enough to become 
intoxicated may suffer a hangover, but her fetus may suffer permanent brain damage resulting in fetal 
alcohol spectrum disorder (41). Also, in both the Iraq and Minimata methylmercury disasters, pregnant 
women showed minimal signs of toxicity, but their children displayed effects ranging from cerebral palsy 
to delayed development (6). Extensive animal data also establish the effects of mercury exposure on the 
developing nervous system. 
 
Research on brain development has mapped out the progression of the proliferation, differentiation and 
migration of different cell types into selected regions of the brain. This work has been extended as 
neurotoxicologists have examined the effects of exposure to chemicals at different points during 
development (42-45). Vulnerability to chemical exposure varies across the stages of brain development 
(43) such that exposure at three months gestation may result in a different effect than exposure to the 
same chemical at six months gestation or at two years of age.  
 
3.2 Bioaccumulation and mixtures 

Concentrations and/or potency of environmental agents can be amplified because of persistence 
(biomagnification and bioaccumulation) and because agents occur in mixtures. Mercury accumulation in 
fish is a well known example of both biomagnification and bioaccumulation (24, 46). Fish can also be 
contaminated with other compounds, such as polychlorinated biphenyls (PCBs); thus we are often 
consuming a mixture of compounds. Recent biomonitoring studies reveal the range of compounds we are 
exposed to and that accumulate in our bodies. Experiments with single chemicals can underestimate the 
effects of these chemicals in mixtures. 
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The interplay among multiple toxicants whether stored or through ongoing exposures, and other 
environmental factors can cumulatively interfere with the brain’s development and exacerbate the impact. 
For example, there is good evidence that lead exposure and maternal stress interact, and there is some 
evidence of potentiated effects of combined exposures of the pesticides paraquat and maneb during 
development (47). 
 
3.3 Mechanisms of disruption 

Brain development is a long and complex process that involves cellular proliferation, migration, 
differentiation, synaptogenesis, myelination and apoptosis (programmed cell death). Chemicals can 
interfere with or stop these processes through the extended period of brain development from conception 
to adolescence (43). There are multiple mechanisms by which chemicals can disrupt neurological 
development, including gene expression acting on protein pathways (48) (49, 50) and hypothyroidism 
(51-53). Recent research has focused on how genes act on protein pathways, determining how tissue and 
cells form and grow. The expression of multiple genes can affect multiple protein pathways. A single 
contaminant that influences gene expression can affect endpoints in more than one tissue. Some 
contaminants have been shown to alter the expression of hundreds of genes, and effects can vary with the 
timing and dose of the contaminant.  
 
3.4 Variable sensitivity 

Genetic variation, or DNA polymorphisms, within populations (humans, wildlife and laboratory animals) 
can result in greater sensitivity to specific contaminants in some individuals. Specific genetic 
polymorphisms are linked to increased risk to various disorders such as fetal alcohol spectrum disorder 
(54) and are associated with increased susceptibility to organophosphate pesticide toxicity (55-57). 
Genetic variations are also associated with increased susceptibility to higher blood-lead levels (58, 59). 
 
The effects of environmental agents, particularly endocrine disruptors, have recently been shown to 
promote epigenetic transgenerational effects – changes passed down to subsequent generations. 
Epigenetics, a molecular phenomenon, typically methylation of the genome, regulates gene expression 
without alterations to the DNA sequence (60, 61). Recent studies have demonstrated that the commonly 
used fungicide vinclozolin has produced epigenetic transgenerational effects on development and cancer 
(62-64). Epigenetic effects may explain in part the transgenerational effects of the synthetic estrogen 
diethylstilbestrol (65). The low-dose effects of endocrine disruptors are being actively explored (66, 67). 
 
3.5 Evidence of exposures (body burden) 

Recent measurements of contaminants in people demonstrate that humans are exposed, starting at 
conception, to hundreds of chemicals simultaneously – and some at levels within ranges known 
individually to affect neurological development (68-70).  
 
Chemicals may also be passed from one generation to the next, from mother to developing child, as 
chemicals stored in or consumed by the mother cross the placenta or are incorporated into breast milk. 
While breast milk is clearly the best food for infants and breast feeding is almost always recommended, 
persistent, bioaccumulative chemicals stored in a woman’s body fat are mobilized during breast feeding 
and excreted in breast milk. 
  
3.6 Other environmental factors 

There are many other chemicals of concern, as well as other environmental factors that interact with 
chemicals, that can affect development and contribute to LDDs. We include a brief discussion of some of 
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these factors due to increasing evidence of their interactions with chemical agents and their contribution 
to LDDs. 
 
3.6.1 Pharmaceuticals  
A wide range of drugs have neurotoxic side effects in children when consumed by a pregnant mother, 
infant or child. When these drugs are given to children (even when needed) and not adequately monitored, 
serious lifetime disabilities can result. A classic example is aminoglycoside antibiotics, which can cause 
severe hearing loss and subsequent learning and development challenges. We know much less about the 
long-term effects of psychoactive compounds. There is evidence that thalidomide or valproate exposure 
during pregnancy increases the risk of autism (71-74).  
 
3.6.2 Genetic factors 
With autism in particular, new research is beginning to reveal that the disorder involves the whole body, a 
complex interaction of genes and the environment, and perhaps many factors working in concert with one 
another (75, 76). While the low-dose effects of endocrine disruptors are still being explored, some have 
argued that genetic susceptibility plays an important role in the etiology of autism (76). 
 
3.6.3 Environmental justice: socioeconomics, nutrition and stress 
Six million children live in poverty in the United States, increasing the likelihood of exposures and 
heightened vulnerability to environmental agents that adversely affect learning and development. 
Economically disadvantaged children are more likely to live in older homes contaminated with lead, live 
in neighborhoods and around schools where pesticides have traditionally been applied, and have diets that 
are less nutritious. Additionally, there is growing evidence that stress combined with environmental 
exposures increases susceptibility to developmental disorders (36, 47). Recent research indicates that 
stress and social ecology can play an important role in developmental disorders (36).  
 
Children lacking certain nutrients are more vulnerable to toxicants. For example, iron and/or calcium 
deficiency affects the absorption and toxicity of heavy metals such as lead (77) and manganese (78, 79). 
Lead is stored in bone and may be mobilized with calcium from bone to the fetus during pregnancy. The 
role of nutrition in mitigating exposure to environmental agents is an important public health issue (80). 
 

4 Status of Evidence on Environmental Agents 
Research definitively shows that environmental agents such as lead, mercury, manganese, arsenic, PCBs, 
alcohol, toluene, tobacco smoke and many pesticides are capable of disrupting human brain development, 
resulting in negative impacts on the functions controlled by the brain. Additional environmental 
chemicals and pollutants, other solvents and other heavy metals have been shown to disrupt brain 
development in animal studies and are suspected of having similar effects in humans. 
 
4.1 Human and animal assessment of learning and development 

Evaluating the potential neurotoxic effects of a compound often requires evaluating animal data and then 
incorporating any human data into the assessment.  
 
Given the large number of compounds with limited or no data on nervous system effects, it is important to 
consider in vitro testing. In vitro systems typically use cell culture techniques for initial assessment of 
neurotoxic potential. New tests utilizing cell lines are now used to assess the effects of chemicals on eye 
irritation or damage. Cell lines are available with which to examine a variety of endpoints on neuron or 
glial cells. Endpoints include proliferation, migration, synpatogenesis and apoptosis. Well-characterized 
in vitro testing systems have a number of potential advantages including minimizing the use of animals, 
reducing costs and increasing adaptability to rapidly screen agents for potential cellular effects. In vitro 
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tests are not sufficient for setting exposure standards, but they can provide a rapid assessment that further 
testing is needed. 
 
It is also possible to use in vitro models to examine chemical mixtures, such as additives, on neuronal 
cells (81). There are, however, a number of challenges with in vitro neurotoxicity testing, such as 
characterizing cell migration and interconnection (82). 
 
Several different tests are used to assess neurotoxic effects in adult and developing animals. Functional 
assessment can be supplemented with morphological assessment of the nervous system (83) although 
conventional pathological assessments are relatively insensitive and may not detect subtle adverse cellular 
changes. A basic screen for behavioral function and neurological involvement is the functional 
observational battery (FOB) (84). The FOB is typically used to evaluate the need for more sophisticated 
neurotoxicity testing. 
 
The US Environmental Protection Agency (EPA) and the Paris-based Organisation for Economic Co-
operation and Development (OECD) established a protocol for the evaluation of developmental 
neurotoxicity (DNT) in laboratory animals (US EPA 870.6300 and OECD 426) (85, 86). These protocols 
include tests of neurobehavioral function, auditory startle (hearing), learning and memory function, 
changes in motor activity, neuropathologic examination and morphometric analysis. For examples and 
comments on the testing protocols see papers by Claudio et al., Cory-Slechta et al, Dorman et al., Garman 
et al. and Mileson and Ferenc (87-91).  
 
Testing involving animals, including nonhuman primates, has been invaluable in evaluating the effects of 
a number of neurotoxicants (92). Recent studies have examined the neurotoxicity of pesticide mixtures in 
animals (93), and protocols are available to examine cognitive effects on weanling rodents (94). 
Advanced assessment of learning and memory in rodents has been used to evaluate the effects of lead 
(95). Tests of specific functions using nonhuman primates are used to evaluate the low-level effects of 
neurotoxicants, such as mercury, on vision, auditory function and vibration sensitivity (96-99) or lead on 
learning and memory (100, 101). The concordance between human and animal neurotoxicity assessment 
is remarkable as demonstrated for lead, mercury and PCBs (102, 103). 
 
Despite significant challenges, human testing for the neurotoxic 
effects of occupational exposures to chemicals is steadily 
advancing (104-107). These procedures have also been used to 
examine the neurotoxic effects of the stress and hazards of war 
(108, 109), which demonstrates broadening utility and acceptance 
of these testing procedures. The World Health Organization 
(WHO) recommended a neurobehavioral test battery for humans 
(110) and test batteries for assessing children (111). Notable 
examples of childhood neurotoxic evaluation include examination 
of the effects of low-level lead exposure (112, 113) and mercury 
exposure (114).  

Environmental agents that 
we are confident cause 
learning and developmental 
disabilities in humans 
 Alcohol 
 Lead 
 Mercury  
 PCBs 
 PBDEs 
 Manganese 
 Arsenic 
 Solvents 
 PAHs 
 Pesticides 
 Nicotine & ETS 

 
4.2 High-confidence conclusions 

Many environmental contaminants have been conclusively shown 
to affect the developing nervous system, causing a range of 
performance deficits (29, 115). 
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4.2.1 Alcohol 
The effects of ethyl alcohol on brain development and function are well established. Fetal Alcohol 
Syndrome (FAS), now considered part of Fetal Alcohol Spectrum Disorder (FASD), is the most 
preventable form of behavioral and learning disabilities. In the US, FASD is estimated to affect 9.1 per 
1000 infants (41), with even higher rates in other parts of the world (116). Even low or moderate 
consumption of alcohol during pregnancy can cause subtle and permanent performance deficits (117, 
118). Specific genetic polymorphisms enhance the risk of FASD (54).  
 
4.2.2 Lead 
Lead is probably the most 
studied of environmental 
contaminants in both humans 
and animals. Its effects on 
learning and development are 
undisputed. Recent research 
indicates that there is no safe 
level of lead exposure for 
children (112, 119, 120). Lead 
exposure impairs overall 
intelligence as measured by 
IQ, learning and memory and 
is associated with ADHD even 
at minute exposures. Efforts to 
prevent lead exposure provide 
an outstanding example of the 
struggle when science meets 
policy (23, 121, 122). Figure 3 
(right) documents the gradual recognition of the harmful effects of lead at ever lower exposures. This 
debate is still unfolding: the US Centers for Disease Control and Prevention (CDC) has not adjusted the 
blood-lead action level since 1990 despite scientific evidence of behavioral effects well below 10 
micrograms per deciliter (μg/dL). Arguments have been made to reduce the CDC blood-lead action level 
to 2 μg/dL (23).  
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4.2.3 Mercury 
There is no doubt that mercury exposure causes learning and developmental disorders; the controversy 
regards the level of exposure. We are all exposed to some form of mercury. Inorganic mercury is the 
liquid silver form and is used in dental amalgams. Mercury is also present in coal, and coal-burning 
electric utilities facilities are a significant source of atmospheric environmental mercury. While much of 
the mercury falls close to the facility, mercury can be carried long distances to pollute water supplies and, 
ultimately, contaminate the food supply. Inorganic mercury is converted to the organic methylmercury 
and bioaccumulates in the flesh of fish, being biomagnified up the food chain. Methylmercury 
contamination often results in fish-consumption advisories, particularly for women and children. The 
knowledge (and concern) that methylmercury exposures affect the developing nervous system resulted in 
several very sophisticated studies designed to assess the effects of very low-level exposures on a range of 
learning and memory tests and on other performance-based tests (6, 27, 28, 46, 102, 103, 123-127). These 
tests typically included age-related assessment of learning and memory, reading, IQ and other 
neurological functions.  
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4.2.4 PCBs 
Polychlorinated biphenyls (PCBs) are mixtures of chlorinated compounds that were once used as cooling 
and insulating fluids in electrical transformers and other electronic components. Because they are very 
persistent, PCBs have become widely distributed in the environment despite being banned in the 1970s. 
Because PCBs bioaccumulate in fat, human exposure continues through the food supply, and infant 
exposure continues through contaminated breast milk. Numerous studies have documented that PCB 
exposure can adversely affect motor skills, learning and memory as shown in lower full-scale and verbal 
IQ scores and reading ability (103, 128-134). 
 
4.2.5 PBDEs 
Polybrominated diphenyl ethers (PBDEs) have been used commonly as flame-retardant chemicals for 
several decades. PBDEs, structurally similar to PCBs, bioaccumulate in animals and humans, and are 
excreted in human breast milk. Recent studies have left little doubt that PBDEs are developmental 
neurotoxicants in animals and lead to changes in motor activity and reduced performance on learning and 
memory tests (135, 136). 
 
4.2.6 Manganese 
Manganese is a trace element which is necessary in small amounts for growth and development. Recent 
studies indicate that high levels of manganese exposure, either from inhalation (welding fumes) (137, 
138) or through drinking water, can damage the developing nervous system (139, 140) as measured in 
full-scale IQ and verbal tests (139, 141-146). For example, a case study documented memory effects in a 
child exposed to manganese in drinking water (142), and a more recent study confirmed similar effects 
(140). The US EPA advises that water levels of manganese should not exceed 300 μg Mn/L, but 
approximately six percent of domestic household wells exceed this level (146). 
 
4.2.7 Arsenic 
Arsenic is commonly found in drinking water around the world, sometimes in concentrations high enough 
to cause cancer (147). Recent studies have found a dose-response relationship between exposure to 
arsenic and intellectual impairment (141, 148-151). While additional studies assessing the impact of low 
levels of arsenic in drinking water are needed, it is clear that arsenic affects the neurodevelopment of 
children.  
 

4.2.8 Solvents 
Solvents include a broad array of 
different compounds including 
toluene, benzene, alcohol, 
turpentine, acetone and 
tetrachloroethylene (TCE) (see 
Table 1), with more than 50 
million metric tons used in the 
US and more than 10 million 
people exposed in the workplace. 
Solvent neurotoxicity is well 
recognized in adult workers 
(152). Ethyl alcohol is a widely 
used and consumed solvent with 
clear learning and developmental 
effects (see above). Recent 
studies indicate that occupational exposure to solvents in salons and laboratories can result in visual 
deficits in offspring (153-156). Several reports have documented that the adverse developmental effects 

Products that are mostly solvent Partially solvent-based 
Gasoline 
Diesel fuel 
Charcoal lighter fluid 
Lantern fuel 
Grease 
Lubricating oils 
Degreasing agents 
Paint strippers 
Paint thinner 
Turpentine 
Nail polish remover 
Rubbing alcohol 

Glues 
Adhesives 
Oil-based paints 
Fingernail polish 
Furniture polishes 
Floor polishes and waxes 
Spot removers 
Metal and wood cleaners 
Correction fluid 
Computer disk cleaners 
Varnishes and shellacs 
Wood and concrete stains 

Table 1. Examples of Solvents 
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of maternal toluene exposure include low birth weight, decreased head circumference and developmental 
delays (157, 158). Awareness of developmental effects of solvent exposure has resulted in increasing 
concern for women working in nail and beauty salons. Some solvents, such as toluene, have also been 
abused by pregnant women who purposely sniff them. 
 
4.2.9 PAHs 
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed air pollutants and well-recognized  
human mutagens and carcinogens. PAHs are generated during combustion of fuels from motor vehicles, 
coal-fired power plants, residential heating and cooking and are also present in tobacco smoke. Recent 
studies have indicated that elevated exposure to PAHs results in lower birth weight (159) and affects 
cognitive development (160). 
 
4.2.10 Pesticides 
Major classes of pesticides are specifically designed to kill insects, plants, fungi or animals. Agricultural 
and residential application of pesticides in the US totals more than one billion pounds per year, with 
thousands of people exposed every year. Data from acute exposure incidents leave no doubt that some 
pesticides, particularly insecticides, are neurotoxic. There is now evidence that childhood exposure to 
pesticides, such as organophosphates, enhances the risk for developmental disorders including deficits in 
memory (161), poorer motor performance (111, 162) and an array of other conditions (163-171). A recent 
study documented the developmental effects of the pesticide chlorpyrifos on inner-city children (172). 
There is also evidence of specific genetic susceptibility to pesticide exposure and related health effects 
(55-57, 163).  
 
4.2.11 Nicotine and environmental tobacco smoke 
Many studies link maternal smoking during pregnancy to behavioral disorders in children (37, 173-175), 
and developmental delays caused by environmental tobacco smoke (ETS, also known as secondhand 
smoke) are costly and preventable (176). Furthermore, new data indicates that childhood exposure to 
ETS is associated with neurobehavioral effects (177). There is growing recognition of subsequent 
behavioral disorders in young adults following exposures either prenatally or as children. (175, 178, 
179). The CDC reported in 2002 that 11.4 percent of all women giving birth in the United States smoked 
during pregnancy (180). Clearly this highly preventable form of developmental disorder requires that 
parents, both male and female, be educated about the harmful effects of tobacco. 
 
4.3 Other contributors and emerging evidence 

It is not possible to address all the chemicals that might be associated with causing learning and 
developmental disorders. A more comprehensive assessment of developmental neurotoxicity of chemicals 
was undertaken by Grandjean and Landrigan (29) in which they pointed out that, for the majority of 
chemicals, we do not have the data necessary to conclude there are no adverse developmental effects. 
They estimate that more than 200 chemicals are known to cause neurotoxic effects in adults and that, for 
many of these chemicals, developmental effects have not been examined. In addition, very few studies 
have focused on the potential synergistic impacts of chemicals in mixtures. Highlighted below are just a 
few agents that are of significant concern. 
 
4.3.1 Endocrine disruptors 
Animal studies have documented that a wide range of chemicals have the ability to disrupt endocrine 
function in animals and affect cognitive function (50). Endocrine disruptors include phthalates, PCBs and 
polychlorinated dibenzodioxins, brominated flame retardants, dioxins, DDT, perfluorinated compounds 
(PFCs), organochlorine pesticides, bisphenol A and some metals. The controversy around the effects of 
endocrine disruptors is perhaps best illustrated by research on bisphenol A (181, 182) whose estrogenic 
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activity was first reported in 1936. It was subsequently found to stabilize polycarbonates and resins and is 
now widely used in many products including food-can liners. There is a growing body of evidence related 
to the very low-dose effects of bisphenol A (66, 67, 183). The very low-dose effects of endocrine 
disruptors can not be predicted from high-dose studies, which contradicts the standard “dose makes the 
poison” rule of toxicology. Nontraditional dose-response curves are referred to as nonmonotonic dose-
response curves.  
 
4.3.2 Fluoride 
Fluoride is commonly added to municipal drinking water across the United States based on strong data 
that it reduces dental decay. This practice is supported by the US Centers for Disease Control (CDC) 
(184, 185). In addition to drinking water, fluoride is also present in a range of consumer products 
including toothpaste (1,000-1,500 parts per million or ppm), mouthwashes and fluoride supplements. The 
drinking water standards were established prior to the introduction of fluoride into many consumer 
products and the direct application of fluoride by dentists. 
 
The central question, which is still unresolved, is what level of exposure results in harmful health effects 
to children. Children's small size means that, pound-for-pound of body weight, they receive a greater dose 
of fluoride than adults. The CDC estimates that up to 33% of children may have dental fluorosis because 
of the excessive intake of fluoride either through drinking water or through other sources -- an estimate 
which is supported by other studies (186). This concern has resulted in CDC issued a recommendation to 
limit fluoride exposure in children under eight years of age and to use fluoride-free water when preparing 
infant milk formula. 
 
In addition, some recent studies suggest that excessive ingestion of fluoride lowers thyroid hormone 
levels, which is particularly critical for women with subclinical hypothyroidism. Decreased maternal 
thyroid levels are known to adversely affect fetal neurodevelopment (51). A study in China, for example, 
reported decreased child IQ levels associated with fluoride in drinking water. (Children in this study were 
also exposed to arsenic in drinking water, which may have confounded the results) (184, 185). The same 
year, in Fluoride in Drinking Water: A Scientific Review of EPA's Standards, a report produced by the 
National Academy of Sciences (NAS) (184), researchers analyzed the appropriateness of EPA’s four ppm 
maximum contaminant level goal for fluoride in drinking water. The NAS was not directed to conduct a 
risk assessment of the effects of low-level fluoride exposure nor analyze other sources of exposure to 
fluoride. Referring to human and animal studies related to neurobehavioral effects, the NAS reports states 
“the consistency of the results appears significant enough to warrant additional research on the effects of 
fluoride on intelligence.” The primary question remains as to whether exposures to fluoride via multiple 
routes of exposure, from drinking water, food and dental-care products, may result in a high enough 
cumulative exposure to contribute to developmental effects. 
 
While it is clear that fluoride has beneficial effects on dental health, emerging science suggests we need to 
further study the dose at which fluoridation may increase risks of neurodevelopment disorders, cancer and 
skeletal or dental fluorosis, particularly for sensitive individuals. 
 
4.3.3 Food additives 
Artificial or synthetic food colors and additives are ubiquitous in the food supply and have long been 
suspected of causing conduct disorders. Their use has encouraged treatments such as the Feingold Diet 
(187, 188) in which many food additives are removed from the diet of individuals with ADHD. Previous 
and recent carefully conducted double-blind human studies have confirmed that artificial food colorings 
such as sunset yellow, tartrazine, carmoisine and ponceau, as well as the preservative sodium benzoate, 
can cause conduct disorders (187-193). Recent studies using well-designed randomized, double-blind, 
placebo-controlled, crossover trials show that artificial food colors and additives cause increased 
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hyperactivity in three-year-old children (191). This has the potential to become a serious issue given the 
large number of children diagnosed with ADHD. 
 

5 Call for Further Research  
Further research into the links between environmental agents and LDDs is urgently needed, as is 
regulatory action in those cases in which the weight of evidence is sufficient now, to reduce exposures. 
Cumulative exposures (from different chemicals with similar modes of action) and aggregate exposures 
(from all sources of exposure to a chemical such as via dust, food, air, water), as well as direct exposure 
from items in the home environment and from food, must be taken into account in assessing risk and 
devising appropriate action. 
 
5.1 Better assessment tools and procedures 

While some progress in testing methodology has been made, few chemicals have been evaluated using the 
Developmental Neurotoxicity Test (DNT) to date, although it has been determined as one of the most 
sensitive tests, in some cases showing adverse effects at lower levels of exposure than other tests.  
There is a growing demand to gather data on and screen compounds for effects on the nervous system. 
More sophisticated methodologies for testing humans and animals are also required, including testing 
procedures that address specific neurological disorders. New methods will be necessary to gather data as 
most high-volume chemicals have little or no developmental or neurotoxicity data. 
 
5.2 In vitro (test-tube) screening of both new and old compounds 

For most chemicals there are very little data on the potential to cause learning or developmental disorders 
or even basic data on potential neurotoxicity. Basic research is needed to develop reliable and 
reproducible in vitro tests that accurately predict the potential for neurotoxic effects. Development of 
these tests will also help reduce the need for animal-based research studies. Relatively quick and 
inexpensive in vitro tests will need to be followed by more efficient, integrated neurobehavioral test 
methods if indicated (see the National Research Council report on toxicity testing (194)). 
 
5.3 Chronic effects of hazardous chemicals 

While the acute high-dose effects of exposure to some chemicals are well documented, the learning and 
developmental effects of chronic, low-level exposure to pesticides, endocrine disruptors, flame retardants 
and other chemicals need further research. 
 
5.4 Multiple exposures 

More research is needed on the consequences of exposure to multiple chemicals and cumulative 
exposures as children and adults are exposed to low levels of a variety of chemical agents throughout life. 
More data are needed on the interaction of the chemicals and their effects on development, and better 
risk-assessment procedures are needed to evaluate multiple exposures (195). 
 
5.5 Low-level exposures 

Many animal and human studies have examined the effects of relatively high exposures. There is 
increasing evidence that low-level exposures to a variety of environmental toxicants (such as lead or 
tobacco) are associated with adverse consequences. In some cases the deficits are proportionately greater 
at lower levels. These new data indicates that studies should be designed specifically to examine the 
effects in representative samples, such as in the National Children’s Study. 
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5.6 Interactions with socioeconomic factors (environmental justice) 

Disadvantaged groups are at a higher risk for learning and developmental disorders. More research is 
needed to determine the mechanisms and relationship by which socioeconomic factors and stress interact 
with chemical exposures to produce learning and developmental disorders. Furthermore, we must develop 
tools and systemic models for prevention.  
 
5.7 Effects of endocrine disruption on cognitive deficits 

Children and adults are exposed to a wide range of chemicals that affect the endocrine system and which 
can cause a range of learning and developmental disorders. Additional research is needed to evaluate the 
effects of low-level exposures and ascertain possible mechanisms of action and better characterize the 
adverse effects.  
 
5.8 Interactions with genetics and identification of susceptible subpopulations  

There is increased need to identify subpopulations who, due to genetic contributors and susceptibility to 
developmental disorders, may be vulnerable to chemical exposure or other factors, including stress, that 
exacerbate the onset of these disorders.  
 
5.9 World Health Organization research recommendations  

Research recommendations on evaluating children’s risk to exposure to environmental chemicals are 
defined in a recent report by the World Health Organization (196). 
 

6 Ethical and Policy Considerations 

6.1 Ethical considerations 

There is growing recognition that ethical, legal and social considerations play a crucial role in public- and 
child-health decision making that involves conflicts between individual, corporate, human rights and 
social-justice goals (197-201). Knowledge of the causes of learning and developmental disabilities 
implies an ethical duty and responsibility to act to protect children’s health and well-being (122, 202). 
Accepting childhood exposure to contaminants that result in compromised learning and behavioral 
abilities violates the basic tenets of biomedical ethics. The principle of beneficence (“do good”) requires 
that the benefits be maximized while the harm be minimized or eliminated. Respect for autonomy or 
personhood is violated when children are unnecessarily exposed to harmful substances. Respect of person 
also implies informed consent, and no child has given the informed consent for exposure to harmful 
chemicals. Finally, the principle of justice requires that burdens be shared equally, and because children 
are more vulnerable they endure a greater burden. In addition there are disparities related to 
socioeconomic status demonstrated by the increased burden of lead exposure in children of poverty (203). 
Perhaps America’s first bioethicist Aldo Leopold said it best when he wrote in 1949: “A thing is right 
when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it 
tends otherwise” (204). It is wrong to allow the exposure of children to environmental agents that cause 
learning and developmental disorders. 
 
6.2 Policy considerations 

Recognition of the contribution of chemical contaminants to LDDs has increased substantially in recent 
years as new evidence has emerged both about the ability of neurotoxic chemicals to interfere with brain 
development and the susceptibility of the brain to chemicals (29). Given this established knowledge, it is 
clear that protecting children from neurotoxic environmental exposures from the earliest stages of fetal 
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development is an essential public health measure if we are to help prevent LDDs and create an 
environment in which children can reach and maintain their full potential.  
 
There is a vast amount of information already available upon which to base sound policy decisions. As 
Garrett Hardin observed in 1968, many problems cannot be solved by technical solutions or additional 
research but only through responsible management of the problem (205). Our society is still contending 
with the effects of adding lead to paint and gasoline, even though its toxic effects were well documented 
at the time. Knowledge was sufficient, but management was not. To protect children, a precautionary 
approach is required that shifts the burden of responsibility to producers or manufacturers to demonstrate 
safety prior to potential exposure.  
 
The researchers and reviewers for this statement are developing a companion document outlining specific 
policy recommendations based on the status of scientific knowledge outlined in this statement. 
 

7 Conclusions 
The scientific evidence we have reviewed indicates environmental contaminants are an important cause of 
learning and developmental disabilities. The proportion of environmentally induced LDDs is a question of 
profound human, scientific and public policy significance. Existing animal and human data suggest that a 
greater proportion is environmentally influenced than has yet been generally realized or than can be 
demonstrated with scientific certainty.  
 
The consequences of LDDs are most significant for the affected individual but also have profound 
implications for the family, school system, local community and greater society. Despite some 
uncertainty, there is sufficient knowledge to take preventive action to reduce fetal and childhood 
exposures to environmental contaminants. Given the serious consequences of LDDs, a precautionary 
approach is warranted to protect the most vulnerable of our society.  
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8 Resources: Children and Environmental Agents 
American Association on Intellectual and 
Developmental Disabilities (AAIDD) 
www.aaidd.org/ 
 
American Pediatric Association  
www.aap.org 
 
Autism Society of America 
www.autism-society.org 
 
Center for Health, Environment and Justice 
www.chej.org/ 
 
Children’s Environmental Health Network 
www.cehn.org 
 
Collaborative on Health and the Environment  
www.healthandenvironment.org 
 
Greater Boston Physicians for Social 
Responsibility 
http://psr.igc.org/ 
 
Healthy Child, Healthy World 
http://healthychild.org/ 
 
Healthy Schools Network, Inc. 
www.healthyschools.org 
 
Institute for Children’s Environmental Health 
www.iceh.org 
 
Learning and Developmental Disabilities 
Initiative 
www.iceh.org/LDDI.html 

 
Learning Disabilities Association of America’s 
Healthy Children Project 
www.healthychildrenproject.org 
 
Learning Disabilities Association of Canada 
(LDAC) 
www.ldac-taac.ca  
 
Mt. Sinai Children’s Environmental Health 
Center 
www.cehcenter.org/ 
 
The National Association for the Dually 
Diagnosed 
www.thenadd.org 
 
National Institute for Environmental Health 
Science Centers for Children’s Environmental 
Health & Disease Prevention Research 
www.niehs.nih.gov/research/supported/centers/p
revention/ 
 
Preventing Harm: A Resource and Action 
Center on Children and the Environment 
www.preventingharm.org 
 
Toxipedia 
http://toxipedia.org/ 
 
University of Tennessee Youth Environment and 
Health Research Group 
http://utyeah.utk.edu 
 
US Environmental Protection Agency Office of 
Children’s Health Protection 
http://yosemite.epa.gov/ochp/ochpweb.nsf/conte
nt/homepage.htm

 
 

http://www.niehs.nih.gov/research/supported/centers/prevention/
http://yosemite.epa.gov/ochp/ochpweb.nsf/content/homepage.htm


9 Glossary of Terms and Term Usage Specific to This Statement 
(A number of the definitions were taken in whole or in part from the Vallombrosa Consensus Statement 
on Environmental Contaminants and Human Fertility Compromise October 2005.) 
 
Attention deficit hyperactivity disorder (ADHD) – The principal characteristics of ADHD are 
inattention, hyperactivity and impulsivity. According to the most recent version of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV-TR) (206), there are three patterns of behavior that 
indicate ADHD. People with ADHD may show several signs of being consistently inattentive. They may 
have a pattern of being hyperactive and impulsive far more than others of their age. Or they may show 
both types of behavior. This means that there are three subtypes of ADHD recognized by professionals. 
These are the predominantly hyperactive-impulsive type (that does not show significant inattention); the 
predominantly inattentive type (that does not show significant hyperactive-impulsive behavior) 
sometimes called ADD – an outdated term for this entire disorder; and the combined type (that displays 
both inattentive and hyperactive-impulsive symptoms) (see also a document from the National Institute of 
Mental Health (13)). 
 
Autism spectrum disorders – The Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR 
(206) includes autism as one of the five pervasive developmental disorders (PDD), more often referred to 
today as autism spectrum disorders (ASD). All these disorders are characterized by varying degrees of 
impairment in communication skills, social interactions and restricted, repetitive and stereotyped patterns 
of behavior (see also a document from the National Institute of Mental Health (16)). 
 
Bioaccumulation – A process whereby contaminants taken up from the surrounding environment (air, 
food, water) are retained and concentrate in tissues at a rate faster than they can be broken down and 
excreted. With bioaccumulation, tissue levels of a contaminant become greater than surrounding 
environmental levels.  
 
Biomagnification – A process whereby the concentration of contaminants increases up the food chain 
due to larger organisms ingesting smaller organisms containing contaminants. Humans and other 
predatory organisms accumulate the highest concentrations of contaminants. 
 
Biomarker – A biological substance found in body fluids (blood, urine, breast milk) or tissues (fat) that 
can be measured and is associated with exposure to a contaminant. Biomarkers can help monitor exposure 
to contaminants and may help characterize individual susceptibilities to exposure. A biomarker of 
exposure is a measure of either the contaminant or a metabolite occurring shortly after exposure. A 
biomarker of effect is an enduring genetic change caused by a contaminant exposure that can be measured 
by changes in DNA or chromosome structures (such as genetic mutations). Biomarkers of effect are not 
necessarily specific to contaminant exposure. A biomarker of susceptibility is a gene or expression of a 
gene (polymorphism) that renders an individual more vulnerable to the adverse effects of contaminant 
exposure. For example, due to differences in enzymes some individuals may not be able to detoxify a 
contaminant as efficiently as others, resulting in higher levels of exposure and greater toxicity. 
 
Biomonitoring – The assessment of exposure to contaminants by measuring biomarkers of exposure in 
body tissues or fluids (such as blood, urine, breast milk, amniotic fluid, hair, adipose tissue, bone). 
Biomonitoring can be used to monitor not only exposures in populations but also changes in levels of 
contaminants over time. 
 
Bisphenol A – A common chemical compound that forms the building block of polycarbonate plastics 
and epoxy resins. Bisphenol A is used in polycarbonate plastic in food containers, water bottles, baby 
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bottles, compact disk cases, eyeglass lenses, the lining of food cans and as a dental sealant. It binds with 
nuclear and extracellular estrogen receptors. 
 
Conduct disorders – Refers to behavior characterized by hostility and aggression. 
 
Developmental delays – Refers to development which is delayed compared with age peers. 
Developmental delays can be associated with varied or negative effects in multiple areas such as sensory, 
motor, language, social, reading and emotional areas. These are also referred to as neurodevelopmental 
delays.  
 
Dioxins – A class of hundreds of related persistent chemicals, some of which are known to be highly 
toxic, that result from industrial combustion/incineration processes; burning of household trash or fuels 
such as wood, coal and oil; chlorine bleaching of pulp/paper; and some types of chemical manufacturing. 
Cigarette smoke also contains dioxins.  
 
DSM-IV-TR – The Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) (206) is a 
handbook for mental health professionals that lists categories of mental disorders and the criteria for 
diagnosing them according to the American Psychiatric Association. It is used worldwide by clinicians 
and researchers as well as insurance companies, pharmaceutical companies and policymakers.  
 
Dyslexia – A specific learning disability that manifests primarily as a difficulty with written language, 
particularly with reading and spelling. Dyslexia is the result of a neurological difference but is not an 
intellectual disability. Most people with dyslexia have average or above-average intelligence. 
 
Endocrine disruptors – Environmental compounds that interfere with the normal function of 
endogenous hormones (those produced by an organism). Endocrine disruptors can stimulate or block the 
actions of hormones or can interfere with their metabolism. Endocrine disruptors continue to be 
discovered but have been recognized to include a diverse range of chemicals including pesticides, 
plasticizers, flame retardants, industrial byproducts, pharmaceuticals and plant-derived compounds. 
 
Endpoints – In a scientific study, the outcome that is being measured. In the field of environmental 
health, this could be a biomarker, toxic effect, disease outcome or other measure anticipated to differ 
between exposed and unexposed populations. 
 
Environmental agents – These include natural or synthetic chemicals, heavy metals (such as lead, 
mercury, cadmium), and naturally occurring compounds such as plant-derived estrogens.  
 
Environmental factors – In this document, “environmental factors” refers to a broader range of possible 
environmental influences than the environmental agents listed above. Environmental factors include 
pharmaceutical use, stress, other chemical agents or physical conditions that adversely affect learning or 
development.  
 
Epigenetics – The molecular phenomena that regulate gene expression without alterations to the DNA 
sequence. 
 
Genetic mutation – A change in the nucleotide sequence of a DNA molecule. Genetic mutations are a 
kind of genetic polymorphism. Genetic mutation refers to changes in DNA sequence which are not 
present in most individuals of a species and either have been associated with disease (or risk of disease) or 
have resulted from damage inflicted by external agents (such as viruses or radiation).  
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Genetic Polymorphism – A difference in DNA sequence among individuals, groups or populations (for 
example, a genetic polymorphism might increase susceptibility to Fetal Alcohol Spectrum Disorder). 
Genetic polymorphisms may be the result of chance processes, may be inherited or may be induced by 
external agents (such as viruses or radiation), which is then referred to as a genetic mutation.  
 
In vitro testing – Generally refers to experiments done in a test tube, outside a living organism. In vitro 
systems typically use cell culture techniques for initial assessment of harmful effects.  
 
Learning and developmental disabilities (LDDs) – Conditions resulting from interference of normal 
brain development and function that adversely affect an individual’s performance. Learning and 
developmental disabilities include but are not limited to deficits in learning and memory, reduced IQ, 
attention deficit hyperactivity disorder, autism spectrum disorder, conduct disorders and developmental 
delays, but do not consider effects of the peripheral nervous system.  
 
Mental retardation – According to the American Association on Intellectual and Developmental 
Disabilities (AAIDD), mental retardation is a disability characterized by significant limitations both in 
intellectual functioning and in adaptive behavior as expressed in conceptual, social and practical adaptive 
skills (see www.aaidd.org/Policies/faq_mental_retardation.shtml).  
 
Mixtures – In this context, “mixtures” indicates the effects of two or more contaminants in which the 
outcome of exposure is different from their separate effects. The interaction could be additive (a sum of 
individual effects), subtractive (one substance is stimulatory and another inhibitory), or multiplicative (the 
effect is greater than the sum of individual effects). 
 
Morphometric – Generally refers to procedures that count or quantitatively assess the number of specific 
cell types. 
 
National Health and Nutrition Examination Survey (NHANES) – A program designed to assess the 
health and nutritional status of adults and children in the United States. The survey is unique in that it 
combines interviews and physical examinations. NHANES is a major program of the National Center for 
Health Statistics (NCHS), which is part of the Centers for Disease Control and Prevention (CDC), US 
Public Health Service, and has the responsibility for producing vital and health statistics for the nation 
(www.cdc.gov/nchs/nhanes.htm). 
 
National Children’s Study – Led by a consortium of US government agencies 
(http://nationalchildrensstudy.gov), this study aims to examine the effects of environmental factors on the 
health and development of more than 100,000 children from before birth to age 21.  
 
Neuropathology/neuropathological – The microscopic study of cells of the brain or nervous system. 
 
Neurotoxic / neurotoxicity – An adverse change in the chemistry, structure or function of the nervous 
system, during development or at maturity, following exposure to a chemical or physical agent. 
 
Neurotoxicant – A chemical or physical agent that produces neurotoxicity. 
 
Nonmonotonic dose-response curve (NMDR) – A traditional dose-response curve in toxicology 
assumes that the response to exposure will increase with increasing dose. This is known as a monotonic 
curve, one in which the slope of the dose-response curve does not change from positive to negative or 
vice versa. In a nonmonotonic dose-response curve, the slope of the dose-response curve changes sign as 
the level of exposure increases. Some NMDR curves are shaped like a U, while others are shaped like an 
inverted U. NMDR curves are important from a public-health perspective because in dose-response 
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curves that are nonmonotonic, low-dose effects cannot be predicted from high-dose testing. The 
traditional assumption that higher doses cause greater harm (“the dose makes the poison”) is used in 
standard risk-assessment studies to identify the level of a chemical exposure beneath which contamination 
should cause no effect. This old assumption may be true for many chemicals and for many classic health 
effects, but it can be misleading for exposures that have a nonmonotonic dose-response curve.  
 
Octyl/nonyl phenols – Chemicals that belong to a broader class of compounds known as alkylphenol 
ethoxylates (APEs). APEs are high-volume chemicals that have been used for more than 40 years as 
detergents, emulsifiers and wetting and dispersing agents. These chemicals are used as ingredients in 
spermicides, cosmetics and detergents and as inert ingredients in pesticides. Some are endocrine 
disruptors. Several are noted contaminants in aquatic environments.  
 
Perfluorinated compounds (PFCs) – Persistent, bioaccumulative chemicals found in a wide array of 
products including stain-resistant coatings for carpets and clothing (Gore-Tex), nonstick cookware 
(Teflon), and insecticides. Widespread contamination of human tissues has been documented, with some 
of the highest levels found in US populations. PFCs have been linked to neuroendocrine and reproductive 
effects.  
 
Persistence – This refers to the stability of a contaminant in the environment. Persistent contaminants are 
characterized by their ability to resist natural degradation so that they build up in the environment with 
time. Persistent contaminants often are transported globally on currents of wind or water. 
 
Phthalates – Chemicals added to personal-care products to enhance penetration and hold scent/color and 
used as plasticizers in rigid plastics such as polyvinyl chloride (PVC) to create flexibility. Phthalates are 
found in numerous and diverse consumer products including vinyl flooring, plastic shower curtains, 
cosmetics and fragrances, shampoos and lotions, toys, pharmaceutical and herbal pill coatings – and in 
hospital equipment including intravenous bags and tubing.  
 
Polybrominated diphenyl ethers (PBDEs) – Persistent, bioaccumulative chemicals added to electronics, 
upholstery foam, textiles and numerous other materials to make them more flame-resistant. PBDEs have a 
chemical structure very similar to PCBs and have been rapidly accumulating in wildlife and human 
tissues. 
 
Polychlorinated biphenyls (PCBs) – There are 209 individual chlorinated PCB compounds (known as 
congeners) that are persistent and bioaccumulative. Manufacture was banned in the US in the late 1970s, 
although PCBs are still found in some products, and widespread environmental contamination still exists. 
PCBs were used in hundreds of commercial and industrial applications, including as lubricants, 
plasticizers, insulators for electrical applications, caulking and paint. Health effects of PCB exposure 
include acne-like skin conditions in adults and neurobehavioral and immunological changes in children. 
PCBs cause cancer in animals (see ATSDR fact sheet www.atsdr.cdc.gov/tfacts17.html).  
 
Polymorphism – see genetic polymorphism above.  
 
Potentiated or potentiate – To enhance or increase the effect of a drug or chemical, which results in an 
increased response or undesired action or effect. 
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