Early-life environmental exposures and child respiratory health: the exposome reveals its first results

V Siroux, PhD

Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort

Lydiane Agier, Xavier Basagaña, Lea Maitre, Berit Granum, Philippa K Bird, Maribel Casas, Bente Oftedal, John Wright, Sandra Andrusaiyte, Montserrat de Castro, Enrique Cequier, Leda Chatzi, David Donaire-Gonzalez, Regina Grazuleviciene, Line S Haug, Amrit K Sakhi, Vasiliki Leventakou, Rosemary McEachan, Mark Nieuwenhuijsen, Inga Petraviciene, Oliver Robinson, Theano Roumeliotaki, Jordi Sunyer, Ibon Tamayo-Uria, Cathrine Thomsen, Jose Urquiza, Antonia Valentin, Rémy Slama, Martine Vrijheid*, Valérie Siroux*

Summary

Background Several single-exposure studies have documented possible effects of environmental factors on lung function, but none has relied on an exposome approach. We aimed to evaluate the association between a broad range of prenatal and postnatal lifestyle and environmental exposures and lung function in children.

Lancet Planet Health 2019; 3: e81–92
Published Online February 5, 2019
Environmental exposures, lifestyle and Lung function

• Emerging concerns for other exposures, including chemical exposures (Gascon et al, Epidemiology 2014; Vernet et al, Env Res 2017; Hansen et al, EHP 2014):
 • persistent organochlorine compounds, such as PCBs (electric insulators) and DDT (pesticides),
 • Perfluorinated compounds (PFASs) (non-stick cookware, water-repellent clothing, stain resistant fabrics, carpets),
 • phthalate metabolites and phenols (manufacture of plastics, solvents, personal care products)

Previous studies focused on single exposure or family of exposures
Issues with single exposure studies

• Selective reporting of associations (by authors and journal) ⇒ Publication bias
• No correction for multiple testing
• Cannot take into account confounding by co-exposures
• Lack of consideration of “mixture effects”

Exposome approach calls for a holistic view of the effects of environmental exposures on human health by evaluating multiple exposures simultaneously.
Aims

To evaluate the association between prenatal and postnatal environmental exposures and FEV₁ in childhood, in the large European Human Early-life exposome (HELIX) study.
Aims
To evaluate the association between prenatal and postnatal environmental exposures and FEV$_1$ in childhood, in the large European Human Early-life exposome (HELIX) study, using an exposome approach.
The Helix population

- 6 cohorts with similar design in 6 EU countries
- Recruitment between 2003 and 2010 according to cohort
- Sample size:
 - Entire cohorts: n=32,000 mother-child pairs
 - Helix subcohort: n=1,200 mother-child pairs from the 6 cohorts
- Neuro-development tests and lung function tests at 6-12 yrs

In utero
- Recruitment (before week 24)
- Mid pregnancy:
 - 1 spot urine sample
 - 1 blood sample (Stored at -80°)

Birth
- Weight
- Gestational duration
- Head circumference

6-12 yrs
- Neuro-development tests
- Lung function test
Spirometry test

• By trained research technicians using EasyOne spirometer and a standardised protocol
 3 acceptable manoeuvres and reproducible manoeuvres (difference below 200 milliliters between the two highest values for forced vital capacity (FVC) and FEV₁)

• Acceptability and reproducibility criteria refined using data recorded from the spirometer
 • BEV/FVC <5%; 1.5s<FET<10s
 • difference below 200 millilitres between the two highest values for forced vital capacity (FVC) and FEV₁

• Assessment of the curve selection process on 243 examinations by looking at the shape of the curves:
 • same curve selected for 79% of the examination
 • when a different curve was selected, Pearson correlation between FEV₁ of the two different curves= 0.96
Integrated tools for exposome assessment

17 exposure families: 85 prenatal and 125 postnatal exposure variables

- **Outdoor factors** assessed from monitoring stations, geospatial models, land use databases and satellite data

- **Chemical exposures** measured in plasma, serum, whole blood or urine samples

- **Socio-economic** (Family Affluence Score) and lifestyle factors (smoking, diet, breastfeeding, physical activity, alcohol, pets, sleep) assessed by questionnaires

Exposure families
- Atmospheric pollutants
- UV
- Surrounding natural space
- Meteorology
- Built environment
- Traffic
- Road traffic noise
- Indoor air
- Organochlorine compounds
- Brominated compounds
- Perfluorinated alkylated substances (PFAS)
- Metals and essential elements
- Phthalate metabolites
- Phenols
- Organophosphate pesticide metabolites
- Water disinfection By-products
- Socio-economic and lifestyle
Line colors indicate sign of correlation coefficient (red: $r<0$)

Not adjusted for cohort

Correlations between exposures from different exposure groups were much lower than within exposure groups.

(Vrijheid et al, EHP, 2014; Tamayo et al, Env Int 2018)
1. **Imputation** of missing values (multiple imputation) (White, *Stat Med* 2011)

2. **Standardization** of exposures (Normalization)

 - Considering each exposure in separate regression models
 - Family-wise error rate multiple testing correction method (Li MX, *Hum Genet* 2012)

4. **Deletion-Substitution-Addition (DSA) algorithm** (Sinisi, 2004)
 - Consideration in a single approach all exposures simultaneously (order one terms only)
 - Consideration of all order two exposure-exposure interaction terms (DSA2 model)

5. All analyses were adjusted for a priori selected factors
 - Cohort, sex, age, height, parental country of birth, breastfeeding duration, season of conception, presence of older siblings, parental education level, maternal age, maternal BMI, postnatal passive smoking, prenatal active and passive smoking.

Simulation study aiming at identifying k=1, 2, 10 or 25 real predictors out of 238 exposures (average results)

(Agier et al., *EHP* 2016)
Population description, n=1,033

<table>
<thead>
<tr>
<th>Factors</th>
<th>Mean (sd) / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort : BIB, %</td>
<td>14%</td>
</tr>
<tr>
<td>EDEN, %</td>
<td>15%</td>
</tr>
<tr>
<td>INMA, %</td>
<td>18%</td>
</tr>
<tr>
<td>KANC, %</td>
<td>14%</td>
</tr>
<tr>
<td>MOBA, %</td>
<td>24%</td>
</tr>
<tr>
<td>RHEA, %</td>
<td>15%</td>
</tr>
<tr>
<td>Child sex, % males</td>
<td>47%</td>
</tr>
<tr>
<td>Child age (years), m(sd)</td>
<td>8.07 (1.58)</td>
</tr>
<tr>
<td>Both parents native from the cohort country, %</td>
<td>84%</td>
</tr>
<tr>
<td>Highest parental education: High</td>
<td>56%</td>
</tr>
<tr>
<td>Middle</td>
<td>40%</td>
</tr>
<tr>
<td>Low</td>
<td>4%</td>
</tr>
<tr>
<td>Maternal age at pregnancy (years)</td>
<td>30.9 (4.7)</td>
</tr>
<tr>
<td>Active smoking during pregnancy, nb cigarettes, m(sd)</td>
<td>0.5 (2.0)</td>
</tr>
<tr>
<td>Passive smoking during pregnancy, %</td>
<td>40%</td>
</tr>
<tr>
<td>Passive smoking during infancy, %</td>
<td>35%</td>
</tr>
<tr>
<td>FEV₁ %pred</td>
<td>98.8 (13.2)</td>
</tr>
</tbody>
</table>
Prenatal Exposome - FEV$_1$ association

ExWAS results

ExWAS-MLR: adjusting for potential confounding by co-exposure

<table>
<thead>
<tr>
<th>Exposure variable</th>
<th>Transf. before IQR standard</th>
<th>IQR</th>
<th>ExWAS</th>
<th>ExWAS-MLR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Estimate [95% CI]</td>
<td>P-value</td>
</tr>
<tr>
<td>PFNA, µg/L</td>
<td>Log2</td>
<td>0.83</td>
<td>-1.4 [-2.7; -0.1]</td>
<td>0.03</td>
</tr>
<tr>
<td>PFOA, µg/L</td>
<td>Log2</td>
<td>0.77</td>
<td>-1.4 [-2.7; -0.1]</td>
<td>0.03</td>
</tr>
<tr>
<td>Inverse distance to nearest road, m$^{-1}$</td>
<td>Log</td>
<td>1.17</td>
<td>1.1 [0.1; 2.2]</td>
<td>0.03</td>
</tr>
</tbody>
</table>

DSA / DSA2

No significant results
Postnatal exposome - FEV₁ association

ExWAS results

<table>
<thead>
<tr>
<th>Exposure variable</th>
<th>Transf. before</th>
<th>IQR</th>
<th>ExWAS</th>
<th>ExWAS-MLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility density /km²</td>
<td>Log 1.32</td>
<td>-1.2</td>
<td>0.03</td>
<td>-1.2</td>
</tr>
<tr>
<td>Copper, µg/L</td>
<td>Log2 0.16</td>
<td>-1.0</td>
<td>0.04</td>
<td>-0.9</td>
</tr>
<tr>
<td>Ethyl-paraben, µg/g of creatinine</td>
<td>Log2 0.98</td>
<td>-0.5</td>
<td>0.03</td>
<td>-0.6</td>
</tr>
<tr>
<td>Sum of (DEHP), µg/g of creatinine</td>
<td>Log2 0.85</td>
<td>-1.3</td>
<td>0.01</td>
<td>-1.3</td>
</tr>
<tr>
<td>MECPP, µg/g of creatinine</td>
<td>Log2 0.87</td>
<td>-1.3</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>MEHHP, µg/g of creatinine</td>
<td>Log2 0.87</td>
<td>-1.2</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>MEOHP, µg/g of creatinine</td>
<td>Log2 0.84</td>
<td>-1.3</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>OXOMINP, µg/g of creatinine</td>
<td>Log2 1.34</td>
<td>-0.9</td>
<td>0.04</td>
<td>-0.4</td>
</tr>
<tr>
<td>House crowding, nb people</td>
<td>None 1.00</td>
<td>-1.1</td>
<td>0.01</td>
<td>-0.9</td>
</tr>
</tbody>
</table>

DSA / DSA2

No significant results
Cohort-by-cohort analysis of the association between pretanal exposome and FEV$_1$%
Cohort-by-cohort analysis of the association between postanal exposome and FEV$_1$%
Cohort-by-cohort analysis of the association between postnatal exposome and FEV$_1$%
CONCLUSION

• First study addressing the impact of the exposome on lung function in children by considering a broad spectrum of prenatal and postnatal environmental factors.

• ExWAS was in favor of lower FEV\textsubscript{1} in childhood with
 • prenatal exposure to perfluorinated compounds (PFNA, PFOA)

• postnatal DEHP and DINP phthalate metabolites

• postnatal exposure to phenols (ethyl-paraben)
 Convergence with previous findings (Vernet et al EHP 2017)

• postnatal exposure to copper (Pearson et al, Eur J Clin Nutr 2005) and house crowding (Cardoso et al., BMC public health 2004).
DISCUSSION

- **Limited statistical power** due to the multiplicity of the exposures that were tested and the rather small effect on lung function that is expected for these exposures.

 No exposure identified by DSA and no two-way interaction between exposures.

- **Different type and magnitude of misclassification bias** between exposures.

 Cautious comparison of the exposure-health association between exposures.

- All estimates are available for future meta-analyses.

- This exposome approach should be seen as an initial screening step, making it possible to identify questionable exposures for which more specific research is needed.
DISCUSSION

Public health implications

• **Results observed for DINP are of particular public health importance** as the use of DINP is currently increasing in Europe as substitution to DEHP and is now among the most common used plasticizer.

• **The chemical substances identified are ubiquitous**; In helix 9 pregnant women and 9 children over 10 had level above the detection threshold

• **Preventive measures** aimed at lowering exposure to the identified ubiquitous chemicals, through stricter regulation and through informing the public by labelling these chemicals in consumer products, could help to prevent early-life lung function impairment, which in turn might have benefits for long-term health.
To expand the statistical approaches in exposome research in order to:

- **Assess combined effect of exposures** (i.e. clustering approaches)
- **Increase statistical power** by reducing the dimension of the exposome by integrating a-priori knowledge, i.e. from biological pathways
- **Improve causal inference**, i.e. by integrating causal structure within the exposome
Acknowledgments

<table>
<thead>
<tr>
<th>Institution</th>
<th>Collaborators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre for Research in Environmental Epidemiology (ISGlobal), Spain</td>
<td>Lea Maitre, Xavier Basagaña, Mariona Bustamante, Maribel Casas, David Donaire, Diana van Gent, Juan Ramon Gonzalez, Mark Nieuwenhuijsen, Oliver Robinson, David Rojas, Jordi Sunyer, Ibon Tamayo, Martine Vrijheid</td>
</tr>
<tr>
<td>Norwegian Institute for Public Health (NIPH) Oslo</td>
<td>Catherine Thomsen, Berit Granum, Kristine Gutzkow, Helle Margrete Meltzer, Per Schwarze</td>
</tr>
<tr>
<td>University of Crete (UoC), Greece</td>
<td>Leda Chatzi, Vicky Lebentakou, Marina Vafeiadi</td>
</tr>
<tr>
<td>Institut National de la Santé et de la Recherche Medicale (Inserm), France</td>
<td>Rémy Slama, Valérie Siroux, Lydiane Agier, Solène Cadiou, Lise Giorgis Allemand, Sarah Lyon-Caen, Joane Quentin</td>
</tr>
<tr>
<td>Bradford Teaching Hospitals NHS Foundation Trust (BTHFT), United Kingdom</td>
<td>John Wright, Lesley Fairley, Rosemary McEachan, Dan Mason, Dagmar Waiblinger, ...</td>
</tr>
<tr>
<td>Vytauto Didziojo Universitetas (VDU) Lithuania</td>
<td>Regina Grazuleviciene, Sandra Andrusaityte, Asta Danileviciute</td>
</tr>
<tr>
<td>Imperial College of Science, Technology and Medicine (ICL), United Kingdom</td>
<td>Muireann Coen, Toby Athersuch, Hector Keun, Esther Vizcaino-Garcia</td>
</tr>
<tr>
<td>Centre for Genetic Regulation (CRG), Spain</td>
<td>Eva Borras, Xavier Estivill, Eduard Sabido</td>
</tr>
<tr>
<td>Veiligheids- en Gezondheidsregio Gelderland Midden (VGGM)</td>
<td>Peter van den Hazel</td>
</tr>
<tr>
<td>Hylobates Consulting S.R.L. (HYLO), Italy</td>
<td>Francesca Bucchini, Luca Bucchini</td>
</tr>
<tr>
<td>Sensing & Control Systems S.L. (S&C), Spain</td>
<td>Alberto Fernandez, Antonella Guzzon, Elena Turco</td>
</tr>
<tr>
<td>Institut National de l’Environnement et des risques (INERIS), France</td>
<td>Céline Brochot, Florence Zeman</td>
</tr>
<tr>
<td>University Santiago de Compostela (USC-CEGEN), Spain</td>
<td>Angel Carracedo, Manuela Gago</td>
</tr>
</tbody>
</table>

Funding:

[Image of funding logo]
Thank you