Climate Change in the PNW and Implications for Public Health

Children's Environmental Health Working Group
14 May, 2015

Ingrid Tohver, UW Climate Impacts Group
Tania M. Busch Isaksen, UW Dept. Environmental and Occupational Health Sciences
The Climate Impacts Group

An interdisciplinary team based at UW studying climate impacts in the Pacific Northwest since 1995

Areas of study:
- Water resources
- Salmon
- Forests
- Coasts
- (Agriculture, Human Health)

Objectives
- Increase regional resilience to climate variability and change
- Produce science accessible to (and useful for!) the decision making community
Projected Increases in PNW Temp

Data source: Abatzoglou (2013)
Extreme Temperature Projections

Increase in number of heat waves (3+ days of HUMIDEX > 32°C) from historical levels to mid 21st century.

Number of days > 95°F increases from less than 3 days to upwards of 10 days by mid century.*

Increase in nighttime heat waves (Tmin > 90th percentile) from historical levels to mid 21st century.

Salatthe 2010, *Kunkel 2013
Projected Changes Annual Precipitation

Small changes in annual precipitation (-5% to +10 %)

Data source: Abatzoglou (2013)
Some models show large seasonal changes

Most indicate drier summers and wetter winters, springs and autumns

Data source: Abatzoglou (2013)
Extreme Precipitation Projections

Increases in the maximum daily precipitation event averaged over 30-year periods: historical (1970 – 1999) vs. future (2030 – 2069)

Salathé et al. 2014
Schematic of a Cool Climate Flood

- Snow
- Snowpack
- Runoff
- Freezing Level
Schematic of a Warm Climate Flood

- Snowfall
- Rainfall
- Freezing Level
- Runoff
- Snowpack
Increased Drought Risk

Ratio of Low Flow (7Q10) Statistics
(21st Century ÷ 20th Century)

A1B

2020s

2040s

2080s

Tohver et al. 2014
Increased Wildfire Frequency

Littell et al. 2010
Projected Global Sea Level Rise

Key contributors to Global SLR

- Ocean has absorbed ~80% of warming associated with rising GHGs in last 50 years
- Thermal expansion – Water expands when warmed
- Melting of glaciers and land-based ice sheets – particularly Greenland and Antarctica since 1990s

Image source: IPCC 2013
WA/OR Sea Level Rise Estimates

Key contributors to regional SLR:

- Local tectonic processes (*subsidence and uplift*)
- Atmospheric dynamics, i.e., wind-driven “pile-up” of waves along the coast

National Research Council, 2012
Implications for Public Health

Vulnerable populations:

- Young children & infants
- Elderly people
- People with compromised immune systems
- Mentally ill populations
- Urban poor, racial/ethnic minorities, the socially-isolated
- Subsistence farmers
- Coastal populations
Impact Pathways for Public Health

Extreme Events (Flood, Storm Surge, Drought)
Warmer Temperatures (Heat stress)
Air Quality (Increased ground-level ozone)
Water Quality
Infectious Diseases
Societal Disruptions
Impact Pathways: Extreme Events

More Frequent Floods
- Injuries and death
- Exposure to hazardous and toxic substances released and spread by flooding,
- Respiratory illness from mold and microbial growth in flood-impacted structures

More Frequent Dry Spells
- More intense/frequent forest fires
- Reduced agricultural production
- Reduced energy and water supplies in summer

Sea Level Rise and Storm Surge
- Flooding of coastal areas
- Saltwater intrusion in aquifers
- Landslides
- Inundation of hazardous sites/sewage systems
Impact Pathways: Warmer Temperatures

Heat and Thermal Stress

- Worsening of existing problems with respiratory illness, cardiovascular disease, and kidney failure
- More heat exhaustion, heart attacks, strokes
- More heat related deaths, although the projected numbers vary widely.

One study for the greater Seattle area projected an additional 157 annual heat-related deaths by 2045 under a moderate (A1B) greenhouse gas emissions scenario.*

Another study projected only an additional 14 annual heat-related deaths in Seattle for approximately the same time period under a very high (A1FI) emissions scenario.#

*Jackson et al. 2010, #Greene et al. 2011
Smoke from the 2012 wildfires in Chelan and Kittitas Counties contributed to an additional 350 hospitalizations for respiratory conditions and 3,400 student absences from school.

*Glen Patrick, Manager of the Environmental Epidemiology, Washington State Dept. of Health

Increased forest fires
- Greater incidence of asthma, bronchitis, and pneumonia hospital admissions
- Missed school/work days

Increased allergen/pollen production
- More severe and longer-lasting allergy symptoms
- More asthma attacks
- Missed school/work days

Greater ground-level ozone production
- Under a high emissions scenario (A2), projections of annual number of additional May-September deaths due to ozone increase from 69 in 1997-2006 to 132 by mid-century in King County, and from 37 (1997-2006) to 74 in Spokane

*Jackson et al. 2010
Impact Pathways: Water Quality

- Increased winter flooding
 - Increased exposure to contaminants spread by flood water
 - Contaminated/disrupted public water supply

- Increased summer drought
 - Decreased water supply
 - Inconsistent groundwater supply

- Increased marine water temperature
 - Models project increased occurrence of Harmful Algal Blooms in the Puget Sound: A. catenella, which paralytic shellfish poisoning, projected to increase by about 13 days by the end of the century under a moderate (A1B) scenario

- Sea level rise
 - Increased salt water intrusion in freshwater supplies and agricultural floodplains
Impact Pathways: Infectious Diseases

Vector-borne diseases

West Nile appeared in WA State in 2006 with 3 reported cases (2005 was an El Niño year)

Water-borne diseases

Diarrhetic Shellfish Poisoning (DSP) and *Vibrio parahaemolyticus* cases concurrent with toxic algal blooms during episodes of warmer ocean temperatures (also linked to increased run-off)

Cases of Campylobacteriosis (*Campylobacter jejuni*) and E. coli (*Escherichia coli*) poisoning frequently reported after flood waters contaminated drinking water

The impact of climate change on Lyme disease, hantavirus, malaria, and dengue in the PNW is unknown.
Impact Pathways: Social Disruptions

Climate-induced migrations

- Higher demand for social services
- Greater energy demand/production
- Overwhelmed emergency management systems
- Lower access to health care
- Poor hit harder
- WA industries at risk: agriculture, energy and forestry
Methods

- Heat day vs. Non-heat day
 - Relative Risk – Poisson regression analysis
 - Top 1% of all days - 99th percentile
- Heat Intensity Effect
 - Time Series Poisson analysis; piece-wise linear fit summary
- Data
 - Mortality: 1980-2010, death certificate data
 - Hospitalizations: 1990-2010, CHARS data
 - Emergency Medical Service Calls: 2007-2012, King County data
- Exposure
 - Humidex: effect of temperature + humidity
King County Heat-Health Risks
All Ages above 99th percentile heat day

KC average 99th percentile day; with humidity = feels-like temp of ~36°C or 97°F humidex
King County Heat-Health Risks

• Mortality effects:
 – All ages for Circulatory (9%), Cerebrovascular (40%), & Accidents (19%)
 – Chronic Renal (900%) 0-4 year age group *very small #s

• Hospitalization effects:
 – All ages for Acute Renal (68%), Chronic Renal (57%) and Natural Heat (244%)
 – Mental Health (318%) 0-4 year age group *very small #s
 – Natural Heat Exposure (399%) 15-44 year age group *small numbers
 – TSA: 15-44 yr age group ↑ 10 & 12% for COPD & Asthma
EMS – BLS Relative Risk Results – 95th percentile (29.7 °C)

<table>
<thead>
<tr>
<th>Medical Issue</th>
<th>All Ages</th>
<th>0-4</th>
<th>5-14</th>
<th>15-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Causes</td>
<td>1.08 (1.06, 1.09)</td>
<td>1.14 (1.07, 1.21)</td>
<td>1.07 (1, 1.14)</td>
<td>1.11 (1.08, 1.13)</td>
</tr>
<tr>
<td>Trauma</td>
<td>1.13 (1.07, 1.18)</td>
<td>1.35 (1.18, 1.54)</td>
<td>1.11 (0.98, 1.25)</td>
<td>1.16 (1.09, 1.23)</td>
</tr>
<tr>
<td>Non-Trauma</td>
<td>1.06 (1.04, 1.08)</td>
<td>1.09 (1, 1.18)</td>
<td>1.04 (0.95, 1.14)</td>
<td>1.09 (1.06, 1.12)</td>
</tr>
<tr>
<td>Neurological</td>
<td>1.03 (1, 1.06)</td>
<td>1 (0.87, 1.15)</td>
<td>0.99 (0.83, 1.17)</td>
<td>1.06 (1, 1.12)</td>
</tr>
<tr>
<td>Heat Illness & Dehydration</td>
<td>3.43 (3.07, 3.84)</td>
<td>3.89 (2.08, 7.29)</td>
<td>4.22 (2.67, 6.69)</td>
<td>4.41 (3.65, 5.32)</td>
</tr>
<tr>
<td>Psychological</td>
<td>1.03 (0.98, 1.08)</td>
<td>1.68 (0.78, 3.6)</td>
<td>0.99 (0.72, 1.34)</td>
<td>1.07 (1.01, 1.14)</td>
</tr>
</tbody>
</table>

Bolded relative risk values are significantly greater than 1 ($p < 0.05$)
Discussion

• Co-health benefits of reducing carbon pollution

• Youth-related research needs:
 – Seasonal allergies
 – Extreme heat - are we ready?
 – Mental health impacts
 – Others???