

Motivation Agreement between exposure metrics Software Conclusions

Assessing county-level exposure to hurricanes and other tropical storms in the United States for epidemiological research

CHE: 20 Pioneers Under 40 in Environmental Public Health

Brooke Anderson

: brooke.anderson@colostate.edu

Q: www.github.com/geanders

Department of Environmental & Radiological Health Sciences Environmental Epidemiology Section Colorado State University

Motivation sessing exposure

Assessing exposure Agreement between exposure metrics Software Conclusions

Colorado State University

Health risks associated with Hurricane Sandy (2012)

Source: NOAA / NASA GOES Project

Health risks in storm-affected areas

- Change in patterns of emergency department visits (Kim et al. 2016)
- Increased outpatient cases of food and waterborne disease among elderly (Bloom et al. 2016)
- Increased rate of myocardial infarctions (Swerdel et al. 2014)
- Increased hospitalizations for dehydration (Lee et al. 2016)
- Difficulty obtaining medical care, medications, and medical equipment (Davidow et al. 2016)

Motivation

Assessing exposure Agreement between exposure metrics Software Conclusions

Colorado State University

Hazard-specific tropical storm metrics

Tropical storm hazard metrics

- Distance from the storm
- High winds
- Rainfall
- Storm surge
- Flood events
- Tornado events

Image sources: Los Angeles Times, NBC

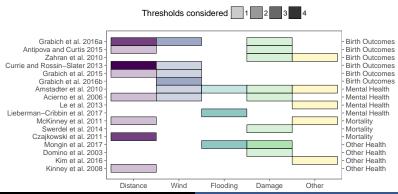
3 / 16

Colorado State University

Assessing tropical storm exposure

Challenge for epidemiological research

How should we determine whether a county was exposed to a tropical storm for epidemiological research?


Colorado State University

Assessing tropical storm exposure

Challenge for epidemiological research

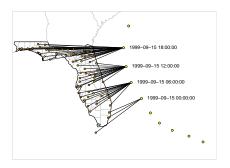
How should we determine whether a county was exposed to a tropical storm for epidemiological research?

Motivation

Assessing exposure Agreement between exposure metrics Software Conclusions

Colorado State University

Project aims


Project aims

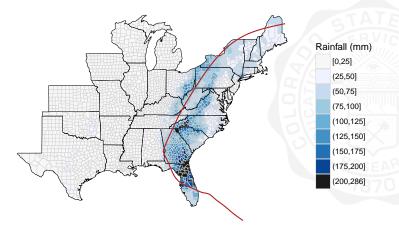
- Develop exposure classifications of all U.S. Atlantic basin tropical storms, 1996–2011, based on reasonable measurements of tropical storm hazards
- Assess agreement between hazard-based county-specific exposure classifications
- Make exposure assessments accessible to other researchers for epidemiological and other impact studies

Colorado State University

Assessing tropical storm exposure

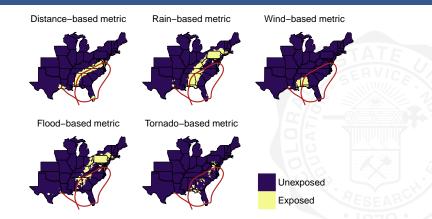
Example of "Best Tracks" data

Distance metric


- **Distance:** National Hurricane Center Best Tracks data
- Wind: Wind model based on Willoughby et al. (2006)
- Rain: Re-analysis rain data (NLDAS-2)
- Flood and tornado events: NOAA Storm Events database

Colorado State University

Rain exposure


Rainfall during Frances, 2004

Colorado State University

County-level exposure to Hurricane Ivan (2004)

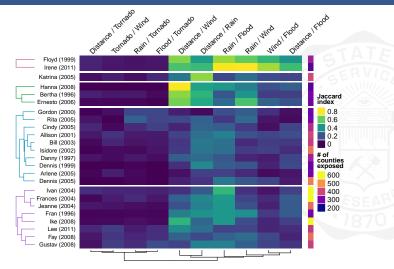
Criteria for exposure classifications: Distance: Within 100 kms of storm track. Rain: \geq 75 mm of rain total for two days before to one day after storm. Wind: Modeled wind of \geq 15 m/s. Flood, Tornado: Listed event in NOAA Storm Events database.

Colorado State University

County-level agreement in storm exposure

Assessing agreement in county classifications

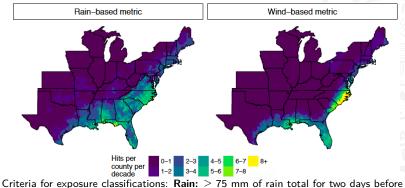
For each storm and each pair of metrics, we measured the *Jaccard index* as a measure of county-level agreement in exposure classification for a storm:


$$J = \frac{X_1 \cap X_2}{X_1 \cup X_2}$$

where X_1 is the set of counties exposed to a storm based on the first metric and X_2 is the set of counties exposed to the storm based on the second metric.

Colorado State University

County-level agreement in storm exposure


Colorado State University

11 / 16

Tropical storm exposure in U.S. counties

Storm hits per county per decade based on rain (left) and wind (right) exposure metrics.

Criteria for exposure classifications: Rain: \geq 75 mm of rain total for two days before to one day after storm. Wind: Modeled wind of \geq 15 m/s.

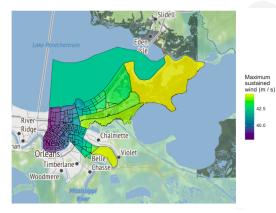
Colorado State University

Project software

'hurricaneexposure'

Create county-level exposure time series for tropical storms in U.S. counties. Exposure can be determined based on several hazards (e.g., distance, wind, rain), with user-specified thresholds. On CRAN.

##	#	A tibble: 4 3	ς 5			
##		storm_id	fips	closest_date	storm_dist	tot_precip
##		<chr></chr>	< chr >	<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	Bill-2003	22071	2003-06-30	38.78412	141.1
##	2	Charley-2004	51700	2004-08-14	43.01152	136.2
##	3	Cindy-2005	22071	2005-07-06	32.21758	113.2
##	4	Floyd-1999	51700	1999-09-16	46.50729	207.5


Colorado State University

Project software

'stormwindmodel'

Model storm winds from Best Tracks data at U.S. locations. Includes modeling sustained and gust winds, as well as duration of sustained and gust winds above a specified threshold. On CRAN.

Colorado State University

Project software

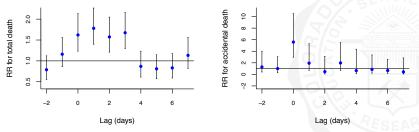
'countyweather', 'countyfloods'

Download weather monitor data through NOAA and USGS APIs by U.S. county. Includes functions to map available monitors / gages for each county. On CRAN.

'noaastormevents'

Download and explore listings from the NOAA Storm Events database. Includes the ability to pull events based on a tropical storm, using events listed close in time and distance to the storm's tracks. On CRAN.

'countytimezones'


Convert time-stamps from UTC to local time zones for U.S. counties based on county FIPs. Facilitates merging weather observations with locally measured data, including health outcomes. On CRAN.

Colorado State University

Continuing work

Relative risk for all-cause (left) and accidental (right) mortality in Miami, FL, at lags from the Hurricane Andrew storm day (lag 0) compared to non-storm days.

Estimates were obtained by comparing storm days to matched non-storm days in the same time of year and day of week in other years. Matched days were picked to exclude days near other storms. Lag 0 represents the storm day. Negative lags represent days before the storm and positive lags represent days after the storm. Vertical lines give 95% confidence intervals.

Brooke Anderson

Colorado State University

Acknowledgements

Funding

This work was supported in part by grants from the National Institute of Environmental Health Sciences (R00ES022631), the National Science Foundation (1331399), and a NASA Applied Sciences Program/Public Health Program Grant (NNX09AV81G).

Collaborators

Roger Peng, Meilin Yan, Joshua Ferreri, Dirk Eddelbuettel, Mohammad Al-Hamdan, William Crosson, Andrea Schumacher, Seth Guikema, and Steven Quiring collaborated on research and software shown here.