Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) and Women’s Reproductive Aging

Ning Ding, PhD, MPH
Collaborative on Health and the Environment
Next Generation Chemical Webinar
03/09/2021
Reproductive Aging and Menopause

Defined as one year without a menstrual period
Age at menopause and women’s health risks

Most women reach menopause between 45 and 55, with a median age between 50 and 52.

Earlier onset
- Increased overall mortality
- Higher risks of cardiovascular disease
- Lower bone density
- Higher risks of osteoporosis
- Higher risks of neurological disease

Later onset
- Increased risks of breast, endometrial, and ovarian cancer
Factors related to age at menopause

- Race/ethnicity
- Family history
- Socioeconomic status
- Obesity
- Physical inactivity
- Smoking
- Surgery
- Pesticides
- Solvents
- Metals
- Pharmaceuticals
- Industrial ingredients

Source: https://www.healthandenvironment.org
PFAS are potential EDCs and ‘forever chemicals’

- **Anthropogenic chemicals**

- **Two main groups**
 - **Carboxylates**: perfluorooctanoic acid (PFOA)
 - **Sulfonates**: perfluorooctane sulfonate (PFOS)

- **Sources**

(Domingo and Nadal, 2017, Domingo and Nadal, 2019, Hu et al., 2016; Post et al., 2009, Trudel et al., 2008, Boronow et al., 2019)
200,000,000+

Americans consume drinking water contaminated by PFAS

Andrews and Naidenko 2020
PFAS and their effects on the ovary

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary

Ning Ding¹, Siobán D. Harlow¹, John F. Randolph Jr², Rita Loch-Caruso³, and Sung Kyun Park ¹,³,*

¹Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; ²Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; ³Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

- Higher PFAS were associated with:
 - Later menarche
 - Irregular menstrual cycles
 - Reduced levels of estrogen

- Folliculogenesis and steroidogenesis
PFAS may deplete the ovarian reserve.

Activate PPAR-α and PPAR-γ

Oxidative stress

Genes in the meiosis of oocytes

Nutrient supply between granulosa cells and oocytes

(Ding et al. 2020)
PFAS and their effects on the ovary

- **Research Gaps:**
 - Lack of prospective cohort
 - PFAS mixture

Question about reverse causality

![Diagram showing the relationship between PFAS in Serum and Menopause with question marks indicating uncertainty]

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary

Ning Ding¹, Siobán D. Harlow¹, John F. Randolph Jr², Rita Loch-Caruso³, and Sung Kyun Park ⁴, ⁵, ⁶

¹Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
²Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
³Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
Study of Women’s Health Across the Nation (SWAN)

- Initiated in 1996-97
- N=3302 women aged 42-52 y
- White from all 7 sites
- Black from Chicago, SE Michigan, Pittsburgh, Boston
- Asians from Oakland (Chinese) and Los Angeles (Japanese)
- Hispanic from Newark
- Approximately annual or biannual follow-up
SWAN Multi-Pollutant Substudy (SWAN-MPS)

PI: Dr. Sung Kyun Park

- Serum/urine samples collected at third SWAN visit, which is the baseline for SWAN-MPS (1999-2000).
- N=1,400
- 5 study sites: Boston, SE Michigan, Oakland, Los Angeles, Pittsburgh.
- White, Black, Chinese, and Japanese.
Determinants of per- and polyfluoroalkyl substances (PFAS) in midlife women: Evidence of racial/ethnic and geographic differences in PFAS exposure

Sung Kyun Parka,b,*, Qing Penga, Ning Dinga, Bhramar Mukherjeec, Siobán D. Harlowa

a Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
b Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
c Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States

Longitudinal trends in perfluoroalkyl and polyfluoroalkyl substances among multiethnic midlife women from 1999 to 2011: The Study of Women’s Health Across the Nation

Ning Dinga, Siobán D. Harlowa, Stuart Battersman\textsuperscript{b,c}, Bhramar Mukherjeed, Sung Kyun Parka,b,*

a Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
b Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
c Department of Civil and Environmental Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States
d Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States

 Detection > 95%
- Linear PFOS
- Branched PFOS
- Linear PFOA
- PFNA
- PFHxS
- EtFOSAA
- MeFOSAA

 Detection < 40%
- Branched PFOA
- PFDA
- PFUnDA
- PFDaDA

 Determinants
- Race/ethnicity
- Menstrual bleeding
- Parity
- Consumption of salty snacks (e.g. popcorn, chips)
- Age
Decline in PFOA and PFOS

PFHxS unchanged

PFNA increased

Concentrations of selected PFAS by study visits between 1999 and 2011 (N=75).
PFAS and Incident Natural Menopause in Midlife Women.
Study population and statistical methods

- **Incident natural menopause**: amenorrhea for at least 12 months not due to hormone therapy, oophorectomy and/or hysterectomy,

- **Cox proportional hazards model** adjusting for age at baseline, race/ethnicity, study site, education, parity, BMI at baseline, physical activity, smoking status and prior hormone use at baseline.
Earlier natural menopause with PFOA and PFOS

1.1 years earlier

- PFOA: Hazard Ratio = 1.65, 95% CI: 1.40 to 1.91, P for trend = 0.01

0.9 years earlier

- PFOS: Hazard Ratio = 1.59, 95% CI: 1.27 to 1.97, P for trend = 0.03
PFAS Mixture

- Unsupervised learning method: K-means clustering
- Minimize within-cluster sum of squares.
- Number of cluster determined using cubic clustering criterion, pseudo F statistic (i.e. the ratio of between-cluster variance to within-cluster variance), and r-squared statistics.
High vs. low overall concentrations patterns: 2.0 years earlier natural menopause

HR (95% CI) comparing High vs. Low: 1.66 (1.17-2.36)

Predicted median age at menopause:
- Low: 52.7 (95% CI: 51.8-54.6) years
- Medium low: 51.9 (95% CI: 51.5-52.7) years
- Medium high: 52.6 (95% CI: 51.8-53.3) years
- High: 50.7 (95% CI: 50.4-51.7) years
Summary: PFAS were associated with earlier natural menopause, a risk factor for overall health.

- PFAS are potential EDCs and ovarian toxicants (Ding et al. 2020).

- Determinants and temporal trends of PFAS

- 2.0 years earlier natural menopause was associated with shorter life expectancy (HR=1.04, 95% CI: 1.02-1.07) in a cohort of 12,134 postmenopausal women followed for an average of 17 years (Ossewaarde et al. 2005).
Future directions

- Linking natural menopause to health conditions.

- Other EDCs and mixture analysis;

(Grindler et al. 2015)
On-going projects

SWAN-MPS (PI: Sung Kyun Park):

- Chemicals: PFAS, metals, PCBs, flame retardants, pesticides, phthalates, phenols, and parabens in serum or urine
- Evaluation of chemicals and their relationships to reproductive traits:
 - Age at natural menopause
 - Hormone profiles
 - Menstrual cycle characteristics
 - …

- Evaluation of metal exposures and their relationship to metabolic traits:
 - Body composition
 - Diabetes
 - Metabolic syndrome and its components
 - …
Thank you!

Questions / Comments

Acknowledgement

Mentor and co-authors: Dr. Sung Kyun Park, Dr. Siobán D. Harlow, Dr. Bhramar Mukherjee, Dr. John F. Randolph Jr., Dr. Rita Loch-Caruso, and Dr. Stuart Batterman at University of Michigan; Dr. Ellen B. Gold, University of California Davis.

Participants in SWAN.

Grants (PI: Dr. Sung Kyun Park) from the National Institute of Environmental Health Sciences (NIEHS) R01-ES026578, R01-ES026964 and P30-ES017885, and by the Center for Disease Control and Prevention (CDC).

Ning Ding, Ph.D., M.P.H.
University of Michigan
School of Public Health
Department of Epidemiology
Personal website: https://sites.google.com/umich.edu/ningding/
Twitter: @NingDing_SPH