Obesity III
Obesogen Assays: Limitations, Strengths, and New Directions

Chris Kassotis, PhD
Assistant Professor
Wayne State University
@cdkassotis

CHE EDC Strategies Partnership Webinar Series
May 19, 2022
Overview of Obesogen Models

Established and Emerging Obesogenic Chemical Evaluation Models

In vitro models

In vivo models
Use of Models in Metabolic Health Toxicity Assessments

- Evaluating causal toxicity of chemicals relies on a combination of *in vitro* and *in vivo* models
 - Need for HTP, reliable *in vitro* models to accurately screen for and prioritize higher order testing
 - Need for reliable *in vivo* models that are cost-effective, have high translation to human health, and are well-validated

- Traditionally, MDC research has relied heavily on rodent-based cell and animal models (3T3-L1)
 - Models used have been broadening over time
 - Increasing use of MSCs and human cell models
 - Increasing use of fish models, particularly zebrafish
 - Increasing use of non-traditional models such as fruit fly, *c. elegans*
Potential Mechanisms of Metabolic Dysfunction

- Numerous potential mechanisms of metabolic disruption:
 - Adipose lineage commitment from MSCs
 - Adipocyte differentiation from precursor committed cells
 - Increased pre-adipocyte proliferation
 - Increased lipid uptake
 - Shifting energy balance to favor calorie storage
 - Altering basal metabolic rate
 - Altering hormonal control of appetite and satiety
 - Altering brain circuitry that controls food intake, energy expenditure

Heindel et al. 2017, Repro Tox
Adipocyte Differentiation Process

Adipocyte commitment
- Mesenchymal stem cell
- Other pathways: Myoblasts, Osteoblasts, Chondroblasts

Adipocyte differentiation
- Preadipose cell
 - Pref-1
 - A2COL6/pO2b4
 - LPLF A transport
 - PPARδ
- Preadipose cell
 - C/EBP βδ
 - IGF-1
 - PRAR γ2

- Immature adipose cell
 - C/EBP γ; GLUT4; β2 AR; β3 AR; ACC FAS; ME; ATP-citrate lyase; GPDH; HSL; ALBP; perilipin; apoE; low Km PDE; GPAT; LPAT; DGAT; SCDI

Emergence of very late markers and further triacylglycerol accumulation
- Growth arrest and emergence of early markers
- Growth reduction (clonal expansion) followed by emergence of late markers and triacylglycerol

Resemble brown/developing white adipose cell

Nagy et al. 2011, Mol Med
3T3-L1 Pre-adipocyte Adipogenesis Assay

- Swiss albino mouse embryonic fibroblast cell line – committed pre-adipocytes
- Extensively used over decades to evaluate adipogenesis
- Mechanisms of adipocyte differentiation well understood
- This assay has proven to be a reliable *in vitro* model for screening metabolic disruption *in vivo*.

Differentiation cocktail:
- 5% NCS -> FBS,
- 1 µg/mL insulin,
- 800 mM IBMX
Adipogenesis Assay Measures

- Triglyceride accumulation
 - AdipoRed - hydrophilic fluorescent dye
 - Partitions into lipid droplets in the cells

- Cell proliferation/cytotoxicity
 - NucBlue DNA dye (Hoechst 33342)
 - Partitions into nuclei and fluoresces upon binding DNA

Rosiglitazone (PPARγ agonist)
Diversity of Cell Model Utilization

In vitro models for metabolic disruption screening

ADIPOCYTES
- **Preadipocytes**
 - Proliferation
 - Adipogenesis
- **Mesenchymal Stem cells**
 - Characterization of Obesogens
- **Spheroid adipocyte model**
 - Adipose physiology

LIVER
- **HepaRG**
 - Aldolase B, CYP2E1, CYB3A4
 - CYP1A1, CYP1A2, CYP1B1
- **Primary Human Hepatocyte**
 - Drug metabolism
 - Liver enzyme induction
- **3D cell culture**
 - NASH model

MUSCLE
- **C2C12**
 - Insulin signaling
 - Mitochondrial function
 - Protein synthesis
- **L6**
 - IR expression
 - Glucose uptake
 - Insulin Resistance
- **Primary Myoblast**
 - Calcium signaling
 - Resting potential
Growing Reliance on MSCs, Human Cells

- Increasing commercial availability of human MSCs, human pre-adipocytes
 - Less reliance on donors, self-isolation
 - Can source from males/females, lean/obese, diabetic/non, subcutaneous/visceral, etc.

- Ability to examine the interplay of commitment across cell lineages (e.g., bone and adipose, muscle, etc.)

- Increasing utility of liver cell assays to examine TAFLD/NAFLD phenotypes, primary human hepatocytes (despite limitations) have increasing use in drug metabolism

- Limited but increasing evaluation of myogenic differentiation and ability of MDCs to suppress signaling/development
Examination of Adipocyte Lineage Commitment as More Novel Endpoint

Commitment assays

- **1 day**: Seed cells
- **2 days**: Test chemical treatments
- **7 days**: Confluency, Start of differentiation
- **7 days**: Adipocyte maintenance media, Assay cells

Adipogenesis assays

- **3 days**: Seed cells
- **7 days**: Confluency, Start of differentiation
- **7 days**: Adipocyte maintenance media, Assay cells

Assay endpoints:
- Triglyceride accumulation (Nile Red stain)
- Pre-adipocyte proliferation (Hoescht DNA stain)
- Adipocyte lineage commitment (comparison of triglyceride accumulation between exposure study designs)
 Increasing Diversity of *in vivo* Models

In vivo models for metabolic disruption screening

<table>
<thead>
<tr>
<th>Models</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zebrafish</td>
<td>• Rapid development, ease of breeding, transparency</td>
<td>• Moderate flexibility</td>
</tr>
<tr>
<td></td>
<td>• Metabolic organs/tissues are physiologically and anatomically similar to humans</td>
<td>• Moderate translational value</td>
</tr>
<tr>
<td></td>
<td>• High-resolution fluorescent imaging of total body adipose</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ease of molecular manipulation, wealth of transgenic models</td>
<td></td>
</tr>
<tr>
<td>Medaka</td>
<td>• Genetic sex determination like humans</td>
<td>• Moderate flexibility</td>
</tr>
<tr>
<td></td>
<td>• Rapid development, ease of breeding, transparency</td>
<td>• Moderate translational value</td>
</tr>
<tr>
<td></td>
<td>• Metabolic organs/tissues are physiologically and anatomically similar to humans</td>
<td>• Less characterization of adipose relative to zebrafish</td>
</tr>
<tr>
<td></td>
<td>• Ease of molecular manipulation, small genome size, high diversity</td>
<td></td>
</tr>
<tr>
<td>C. elegans</td>
<td>• Compounds that modulate fat storage and obesity can be identified</td>
<td>• Lower conservation of biological pathways with mammals</td>
</tr>
<tr>
<td></td>
<td>• Food intake and energy expenditure can be measured easily</td>
<td>• Lack of specific organs and circulatory systems</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>• Small size, short generation time, inexpensive and easy breeding</td>
<td>• Anatomically different from mammals</td>
</tr>
<tr>
<td></td>
<td>• Several discrete organs perform the same as humans</td>
<td>• Lower conservation of many relevant biological pathways with mammals</td>
</tr>
<tr>
<td></td>
<td>• Less regulations governing invertebrate animal use</td>
<td></td>
</tr>
<tr>
<td>Rodents</td>
<td>• Well described model with clear translation to human outcomes</td>
<td>• Time consuming and expensive compared to above alternatives, but less so with larger animal models (e.g. porcine, bovine, ovine, and non-human primates).</td>
</tr>
<tr>
<td></td>
<td>• Periconception, pregnancy, parental and offspring, short- and long-term, multi- and trans-generational outcomes can be assessed</td>
<td>• Ethical issues; regulatory push to reduce use of mammalian vertebrate animal models</td>
</tr>
<tr>
<td></td>
<td>• Diverse housing materials readily available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Well-characterized & customizable feed options readily available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inbred and outbred models available to dissect role of genes, environment, and their interactions</td>
<td></td>
</tr>
</tbody>
</table>
Zebrafish as a Metabolic Model

- Measurable adipose/adipocytes appear as early as ~9-12 days of development in zebrafish, originally in the pancreatic and abdominal visceral depots.
- 34 anatomically/physiologically/molecularly distinct adipose depots throughout the body of the fish.
- Clear developmental timeline.
- Fish adipose tissue contains a heterogeneous cell population, including adipocyte progenitor cells – similar to mammals.
- Depots separated into subcutaneous, visceral, intramuscular adipose tissues, with characteristics similar to humans.
- Zebrafish do not have brown adipocyte tissue.

Minchin and Rawls, 2017 *Dis Mod & Mech*
Zebrafish as a Metabolic Model

- Molecular mechanisms underlying adipocyte and lipid depot development are highly conserved across vertebrates:
 - Genes associated with adipocyte differentiation (fabp, pparg, cebp), lipolysis (lipoprotein lipase), and endocrine function (leptin, adiponectin, adipsin)
 - Energy storage functions and morphology of adipose tissue

- Adipose depots respond to high fat challenge and food withdrawal as you would anticipate
 - Organisms utilize the adipose in times of food stress and pack on extra adipose with HFD

- Imaging of whole-animal adipose in mammals is limited, technically challenging, and generally low resolution, whereas imaging in fish is high-resolution and relatively easy

Minchin and Rawls, 2017 Dis Mod & Mech
C. Elegans as a Metabolic Model

- Small nematode living in temperature soil environments
- Main regulatory pathways of energy homeostasis shared with mammals
 - Lower conservation of many of these pathways and lack of specific organs
 - Lack PPARg, though express orthologs to PPARa and PPARd
 - No identifiable homolog for leptin
 - No cells specifically designed for lipid storage (i.e., adipocytes)
 - Store lipids primarily in intestinal and epidermal skin-like cells
- BPS, methylmercury, and other MDCs increase lipid deposition, similar to other *in vivo* MDC models
Drosophila melanogaster as a Metabolic Model

- Fruit fly model organism prized for rapid life cycle, large number of offspring per generation, and simpler genetics relative to most vertebrates
- Despite anatomical differences, lots of functional overlap with humans
 - Fat body covers many of the metabolic health functions of both liver and adipose tissue
- DEHP, methylmercury, PFAS have been described to increase weight/adiposity and/or signaling
The Future of Obesogen / MDC Screening

- Need for new/improved standardized testing methods to ID chemicals that disrupt metabolic health through diverse mechanisms.
 - Multiple large-scale EU efforts designed to help address this gap

- Improved understanding and validation of alternative / emerging *in vitro* and *in vivo* obesogen models.
 - Increasing use of other animal models, human *in vitro* models, and 3D/spheroid cell culture techniques

- Predictive modeling may offer some improved utility in screening the myriad chemicals in commerce for MDC properties
 - Need for reliable, reproducible ToxCast and other input data
 - Need for robust understanding of MIEs, contributory mechanisms
Questions?