Maternal and neonatal effects of \textit{in utero} exposure to perfluoroalkyl ether acids in the Sprague-Dawley rat

Justin Conley

Reproductive and Developmental Toxicology Branch
Office of Research and Development
U.S. Environmental Protection Agency

Research Triangle Park, NC

The views expressed in this presentation do not necessarily represent the views or policy of the USEPA

Photo credit: NCSU
Research Team

Earl Gray
Vickie Wilson
Phillip Hartig
Mary Cardon
Christy Lambright
Nicki Evans
Elizabeth Medlock-Kakaley

Not pictured: Erin Hines, Aaron Dixon
Collaborators: James McCord, Mark Strynar, Donna Hill
Emerging PFAS

- PFOS and PFOA phased out and replaced in some instances with perfluoroalkyl ether acids (PFEAs)
- Parent compounds and manufacturing byproducts detected in drinking water and/or human serum in multiple locations globally
- Few or no peer-reviewed toxicity studies on hexafluoropropylene oxide dimer acid (GenX), Nafion byproduct 2 (NBP2), or perfluoro-methoxyacetic acid (PFMOAA)

GenX

PFMOOA

NBP2

USEPA Chemical Dashboard
Research objectives

- Assess maternal and perinatal effects of gestational exposure to PFEAs that have documented human exposure but little/no published toxicity data available.

- Develop Adverse Outcome Pathways to facilitate the use of \textit{in vitro} or refined \textit{in vivo} assays to predict effects of additional PFAS in future testing.

\begin{center}
\includegraphics[width=\textwidth]{research_objectives_diagram.png}
\end{center}
In vitro human and rat PPAR alpha and gamma activity

Human

PPAR α

- GWS90735
- Octanoic acid
- Oleic acid
- GenX
- PFOA
- PFMOAA
- PFOS
- NBP2

PPAR γ

- Rosiglitazone
- Octanoic acid
- Oleic acid
- GenX
- PFOA
- PFMOAA
- PFOS
- NBP2

Rat

PPAR α

- GWS90735
- Octanoic acid
- Oleic acid
- GenX
- PFOA
- PFMOAA
- PFOS
- NBP2

PPAR γ

- Rosiglitazone
- Octanoic acid
- Oleic acid
- GenX
- PFOA
- PFMOAA
- PFOS
- NBP2
In vivo study designs

- Charles River Sprague-Dawley rat
- 3-9 dams/litters per dose group
- Oral gavage administration
- Ultra pure water vehicle

- Body weight
- Liver weight
- Fetal testis testosterone production
- Serum thyroid hormones (T3/T4)
- Clinical chemistry
- Liver gene expression
- Serum & liver chemical concentration

GD=gestation day
PND=postnatal day
Fetal liver PPAR signaling pathway gene expression

GD 14-18 exposure

Fetal GenX liver

<table>
<thead>
<tr>
<th>Gene</th>
<th>Ctl</th>
<th>0.1</th>
<th>0.3</th>
<th>1</th>
<th>3</th>
<th>10</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ehhadh</td>
<td>4.6</td>
<td>30.5</td>
<td>81.2</td>
<td>144.8</td>
<td>214.8</td>
<td>252.3</td>
<td></td>
</tr>
<tr>
<td>Fabp1</td>
<td>3.3</td>
<td>10.9</td>
<td>28.3</td>
<td>56.6</td>
<td>77.8</td>
<td>88.3</td>
<td></td>
</tr>
<tr>
<td>Hmgcs2</td>
<td>2.9</td>
<td>4.6</td>
<td>8.0</td>
<td>16.7</td>
<td>20.9</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>Cpt1b</td>
<td>1.7</td>
<td>3.0</td>
<td>3.5</td>
<td>8.6</td>
<td>10.3</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>Acox1</td>
<td>1.2</td>
<td>1.5</td>
<td>2.3</td>
<td>3.7</td>
<td>5.7</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Ech1</td>
<td>1.5</td>
<td>2.1</td>
<td>2.6</td>
<td>4.6</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cpt2</td>
<td>1.4</td>
<td>2.1</td>
<td>2.9</td>
<td>3.2</td>
<td>4.1</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Scd1</td>
<td>1.7</td>
<td>2.4</td>
<td>2.9</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rxrg</td>
<td>2.2</td>
<td>4.0</td>
<td>4.4</td>
<td>4.9</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acaaa2</td>
<td>1.8</td>
<td>2.3</td>
<td>2.5</td>
<td>3.2</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slic22a5</td>
<td>1.6</td>
<td>1.7</td>
<td>2.6</td>
<td>2.4</td>
<td>3.4</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Slic27a2</td>
<td>1.2</td>
<td>1.6</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadm</td>
<td>1.4</td>
<td>1.7</td>
<td>1.9</td>
<td>2.4</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acadl</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fads2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Acsil3</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fetal NBP2 liver

<table>
<thead>
<tr>
<th>Gene</th>
<th>Ctl</th>
<th>0.1</th>
<th>0.3</th>
<th>1</th>
<th>3</th>
<th>10</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabp1</td>
<td>1.4</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maternal NBP2 dose (mg/kg/d)

ANOVA p<0.001
Pairwise vs control p<0.01
Adverse neonatal effects
GD 8 – PND 2 exposure

Birthweight

Neonatal mortality

Birthweight (average pup wt (g))

GenX (mg/kg/d)

NBP2 (mg/kg/d)

Pup survival on PND2 (%)

GenX (mg/kg/d)

NBP2 (mg/kg/d)
Adverse neonatal effects
GD 8 – PND 2 exposure

PND2 pup relative liver weight

Relative liver wt (% BW)

GenX (mg/kg/d)

NBP2 (mg/kg/d)

N/A
Histopathological evaluation of PND0 pup liver

Treated – GenX 250 mg/kg

Control

PND0 pup liver glycogen score

Liver glycogen severity score

GenX (mg/kg/d)

NBP2 (mg/kg/d)
Fetal liver glycogen deposition is critical for neonatal health

Neonatal liver glucose metabolism pathway gene expression

Neonatal liver PND(0)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Control</th>
<th>10</th>
<th>30</th>
<th>62.5</th>
<th>125</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ugp2</td>
<td>-5.7</td>
<td>-13.8</td>
<td>-14.6</td>
<td>-23.1</td>
<td>-30.0</td>
<td></td>
</tr>
<tr>
<td>Aldob</td>
<td>-7.6</td>
<td>-11.3</td>
<td>-16.7</td>
<td>-24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agl</td>
<td>-4.3</td>
<td>-7.3</td>
<td>-11.5</td>
<td>-13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idh1</td>
<td>-2.0</td>
<td>-2.4</td>
<td>-3.4</td>
<td>-5.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fbp1</td>
<td>-2.4</td>
<td>-3.0</td>
<td>-3.7</td>
<td>-5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pygl</td>
<td>-2.1</td>
<td>-3.3</td>
<td>-3.9</td>
<td>-5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H6pd</td>
<td>-3.1</td>
<td>-4.0</td>
<td>-5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pdhb</td>
<td>-2.1</td>
<td>-2.3</td>
<td>-3.4</td>
<td>-4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idh2</td>
<td>-2.1</td>
<td>-2.4</td>
<td>-3.1</td>
<td>-4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fh1</td>
<td>-2.8</td>
<td>-3.2</td>
<td>-3.1</td>
<td>-4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pgm2</td>
<td>-2.1</td>
<td>-2.2</td>
<td>-2.5</td>
<td>-4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdh1</td>
<td>-2.3</td>
<td>-2.3</td>
<td>-3.1</td>
<td>-3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sdhb</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-2.5</td>
<td>-3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdh2</td>
<td>-2.1</td>
<td>-2.0</td>
<td>-2.3</td>
<td>-3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rbks</td>
<td>-2.2</td>
<td>-2.1</td>
<td>-3.0</td>
<td>-2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucla2</td>
<td>-1.5</td>
<td>-2.0</td>
<td>-2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANOVA p<0.001

Pairwise vs control p<0.01
GenX does not accumulate in maternal serum or liver...

Maternal serum [GenX]

Maternal liver [GenX]
...but exposure duration is important for effects

Maternal liver weight

GD 16-20 dosing
GD 8-PND 2 dosing

Maternal GenX dose (mg/kg/d)

Relative liver weight (% of control)
Margin of internal exposure – rat:human

Human factory worker serum [GenX]

Margin of Internal Exposure:
Ratio of Rat/Human serum [GenX]

- Reduced maternal weight gain
- Reduced pup survival

- Decreased pup liver Ugp2 expression
- Increased maternal & pup liver weight
- Reduced pup liver glycogen

Worker ID

Maternal oral GenX (mg/kg/d)

Rat/Highest Worker [GenX] (Fold)

<DL
PFAS co-exposures in pregnant women

• **Woodruff et al. 2011** – US pregnant women from NHANES 2003-2004 (n=268)
 • 99% with detectable PFOS and PFOA

• **Dereumeaux et al. 2016** – Elfe Cohort French pregnant women 2011 (n=277)
 • >99% with detectable PFOA, PFOS, PFHxS, PFNA

• **Berg et al. 2014** – Northern Norway Mother-and-Child Contaminant Cohort Study 2007-2009 (n=391)
 • >99% with detectable PFHxS, PFOS, PFOA, PFNA, PFDA, PFUnDa

• **Hopkins et al. 2018** – Drinking water derived from Cape Fear River water
 • Frequent detection of GenX, NBP2, PFMOAA, PFO2HxA

• **NCSU GenX Exposure Study (genxstudy.ncsu.edu)** – 388 participants from Wilmington, NC area
 • Detectable NBP2 (99%), PFO4DA (98%), PFO5DoDA (87%)
 • PFOS, PFOA, PFHxS, PFNA, PFDA also detected

• **Critical to study mixture-based effects of co-exposure to multiple PFAS compounds**
GenX+NBP2+PFOS Mixture study

GenX
- ED$_{50}$ = 108.7 mg/kg
- Slope = -3.4

NBP2
- ED$_{50}$ = 9.7 mg/kg
- Slope = -16.9

PFOS (Lau et al. 2003)
- ED$_{50}$ = 3.0 mg/kg
- Slope = -5.8

Top dose = each chemical at ED$_{50}$

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>33%</th>
<th>10%</th>
<th>3.3%</th>
<th>1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenX (mg/kg)</td>
<td>110</td>
<td>36.7</td>
<td>11</td>
<td>3.67</td>
<td>1.1</td>
</tr>
<tr>
<td>NBP2 (mg/kg)</td>
<td>10</td>
<td>3.3</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>PFOS (mg/kg)</td>
<td>3</td>
<td>1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Mixture effects appear dose additive
Impact of co-exposure on chemical dose-response

Represented by 20% reduction in birthweight

GenX only
- ED₈₀: 164 mg/kg
 95% CI: 131-205 mg/kg

GenX in mixture
- ED₈₀: 69 mg/kg
 95% CI: 51 - 94 mg/kg
Summary

- GenX and NBP2 produced adverse maternal and neonatal effects but with disparate patterns and oral dose ranges.

- Effects for GenX and NBP2 generally consistent with those reported for PFOA and PFOS but at slightly higher oral doses.

- Both PPAR α and γ appear to be involved as MIEs.

- Exposure duration is important - despite rapid clearance, longer exposure produced greater adverse effects for GenX.

- Internal dosimetry is important for estimating potency and relevance to human exposures.

- Mixture effects of exposure to GenX+NBP2+PFOS appear dose additive.

conley.justin@epa.gov