Using the Key Characteristics Framework to Identify Potential Breast Carcinogens

Jennifer Kay, PhD Silent Spring Institute Newton, MA kay@silentspring.org

silentspring.org

Breast Cancer: a public health crisis

- #1 invasive cancer diagnosis in the US and worldwide
- 6x more prevalent than any cancer among men under age 50 in the US
- Rising in rate of diagnosis, esp. in younger women

73.2 cases/ 100k people

Objective

Demonstrate application of the **Key Characteristics framework to identify chemical risk factors** for human chronic diseases using breast cancer as an example

Key Characteristics (KCs) of Carcinogens

Describes features of exposures that cause cancer

Framework for evaluating potential carcinogens based on **mechanistic** effects (which can be measured quickly) rather than cancer (which takes a long time)

> For breast cancer, focus on estrogen and progesterone

Key characteristic:
1. Is electrophilic or can be metabolically activated
2. Is genotoxic AKA, damages DNA
3. Alters DNA repair or causes genomic instability
4. Induces epigenetic alterations
5. Induces oxidative stress
6. Induces chronic inflammation
7. Is immunosuppressive
8. Modulates receptor-mediated effects
9. Causes immortalization
10. Alters cell proliferation, cell death, or nutrient supply

Smith MT, Guyton KZ, Gibbons CF, Fritz JM et al.. Env Health Persp., 124(6):713-21

Outline

- How we identified breast cancer-relevant chemicals with Key Characteristics
 - Integrate *in vivo* cancer studies (in animals) and *in vitro* molecular effects (in cells) to identify chemical exposures that may increase breast cancer risk
- How we validated our approach
 - Demonstrate that endocrine and genotoxicity data can predict chemicals likely to increase breast cancer risk
- Chemical testing and regulatory decisions: what you need to know
 - The Endocrine Disruptor Screening Program and pesticides

MCs are enriched for BC-relevant KCs

MCs are enriched for BC-relevant KCs vs. Non-MCs

MCs are more likely to be stronger EDCs

^bTwo-sided Cochran-Armitage trend test for strength of endocrine activity in MCs vs. non-MCs

MCs are more likely to be stronger EDCs and genotoxic

^aFisher exact test for proportion of MCs positive vs. proportion non-MCs positive ^bCochran-Armitage trend test for strength of endocrine activity in MCs vs. non-MCs

Conclusions

- We identified hundreds of chemicals that could increase breast cancer risk by combining traditional cancer studies with mechanistic data
- Rodent MCs are more likely to increase E2/P4 synthesis, activate the ER, and cause DNA damage vs. non-MCs
- Endocrine activity can flag likely MCs, but *lack of activity does not indicate the chemical is not an MC*
 - E2/P4 steroidogenesis and ER activation are important BC-relevant activities, but there are many others (and most lack methods to screen chemicals for them)
- Our study highlights ways regulatory chemical assessment can be strengthened to better protect human health

Endocrine Disruptor Screening Program: EPA's new proposal to prioritize pesticides

Coming soon!

We've identified many potential BC hazards – now what? Further prioritize chemicals for reduction and research!

- Exposure sources
- Biomonitoring and predicted intake levels
- Environmental releases
- Current regulations

Thank you!

Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available *in Vivo, in Vitro,* and *in Silico* Data

Jennifer E. Kay, Julia Green Brody, Megan Schwarzman, Ruthann A. Rudel

https://ehp.niehs.nih.gov/doi/10.1289 /EHP13233

We are grateful for funding from

Charitable donations to the Safer Chemicals Program at Silent Spring Institute and California Breast Cancer Research Program grant 23QB-1881

kay@silentspring.org | silentspring.org